Non-linear dynamics and statistical theories for basic geophysical flows

ANDREW J. MAJDA
New York University

XIAOMING WANG
Florida State University

CAMBRIDGE UNIVERSITY PRESS
A.1 Stronger controls on $A(t)$ 103
A.2 The proof of the mathematical form of the selective decay principle in the presence of the beta-plane effect 107

4 Non-linear stability of steady geophysical flows 115
4.1 Introduction 115
4.2 Stability of simple steady states 116
4.3 Stability for more general steady states 124
4.4 Non-linear stability of zonal flows on the beta-plane 129
4.5 Variational characterization of the steady states 133
References 137

5 Topographic mean flow interaction, non-linear instability, and chaotic dynamics 138
5.1 Introduction 138
5.2 Systems with layered topography 141
5.3 Integrable behavior 145
5.4 A limit regime with chaotic solutions 154
5.5 Numerical experiments * 167
References 178
Appendix 1 180
Appendix 2 181

6 Introduction to information theory and empirical statistical theory 183
6.1 Introduction 183
6.2 Information theory and Shannon’s entropy 184
6.3 Most probable states with prior distribution 190
6.4 Entropy for continuous measures on the line 194
6.5 Maximum entropy principle for continuous fields 201
6.6 An application of the maximum entropy principle to geophysical flows with topography 204
6.7 Application of the maximum entropy principle to geophysical flows with topography and mean flow 211
References 218

7 Equilibrium statistical mechanics for systems of ordinary differential equations 219
7.1 Introduction 219
7.2 Introduction to statistical mechanics for ODEs 221
7.3 Statistical mechanics for the truncated Burgers–Hopf equations 229
7.4 The Lorenz 96 model 239
References 255
8 Statistical mechanics for the truncated quasi-geostrophic equations 256
 8.1 Introduction 256
 8.2 The finite-dimensional truncated quasi-geostrophic equations 258
 8.3 The statistical predictions for the truncated systems 262
 8.4 Numerical evidence supporting the statistical prediction 264
 8.5 The pseudo-energy and equilibrium statistical mechanics for fluctuations about the mean 267
 8.6 The continuum limit 270
 8.7 The role of statistically relevant and irrelevant conserved quantities 285
 References 285
 Appendix 1 286

9 Empirical statistical theories for most probable states 289
 9.1 Introduction 289
 9.2 Empirical statistical theories with a few constraints 291
 9.3 The mean field statistical theory for point vortices 299
 9.4 Empirical statistical theories with infinitely many constraints 309
 9.5 Non-linear stability for the most probable mean fields 313
 References 316

10 Assessing the potential applicability of equilibrium statistical theories for geophysical flows: an overview 317
 10.1 Introduction 317
 10.2 Basic issues regarding equilibrium statistical theories for geophysical flows 318
 10.3 The central role of equilibrium statistical theories with a judicious prior distribution and a few external constraints 320
 10.4 The role of forcing and dissipation 322
 10.5 Is there a complete statistical mechanics theory for ESTMC and ESTP? 324
 References 326

11 Predictions and comparison of equilibrium statistical theories 328
 11.1 Introduction 328
 11.2 Predictions of the statistical theory with a judicious prior and a few external constraints for beta-plane channel flow 330
 11.3 Statistical sharpness of statistical theories with few constraints 346
 11.4 The limit of many-constraint theory (ESTMC) with small amplitude potential vorticity 355
 References 360
Contents

12 Equilibrium statistical theories and dynamical modeling of flows with forcing and dissipation 361
 12.1 Introduction 361
 12.2 Meta-stability of equilibrium statistical structures with dissipation and small-scale forcing 362
 12.3 Crude closure for two-dimensional flows 385
 12.4 Remarks on the mathematical justifications of crude closure 405
 References 410

13 Predicting the jets and spots on Jupiter by equilibrium statistical mechanics 411
 13.1 Introduction 411
 13.2 The quasi-geostrophic model for interpreting observations and predictions for the weather layer of Jupiter 417
 13.3 The ESTP with physically motivated prior distribution 419
 13.4 Equilibrium statistical predictions for the jets and spots on Jupiter 423
 References 426

14 The statistical relevance of additional conserved quantities for truncated geophysical flows 427
 14.1 Introduction 427
 14.2 A numerical laboratory for the role of higher-order invariants 430
 14.3 Comparison with equilibrium statistical predictions with a judicious prior 438
 14.4 Statistically relevant conserved quantities for the truncated Burgers–Hopf equation 440
 References 442
 A.1 Spectral truncations of quasi-geostrophic flow with additional conserved quantities 442

15 A mathematical framework for quantifying predictability utilizing relative entropy 452
 15.1 Ensemble prediction and relative entropy as a measure of predictability 452
 15.2 Quantifying predictability for a Gaussian prior distribution 459
 15.3 Non-Gaussian ensemble predictions in the Lorenz 96 model 466
 15.4 Information content beyond the climatology in ensemble predictions for the truncated Burgers–Hopf model 472
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.5 Further developments in ensemble predictions and information theory</td>
<td>478</td>
</tr>
<tr>
<td>References</td>
<td>480</td>
</tr>
<tr>
<td>16 Barotropic quasi-geostrophic equations on the sphere</td>
<td>482</td>
</tr>
<tr>
<td>16.1 Introduction</td>
<td>482</td>
</tr>
<tr>
<td>16.2 Exact solutions, conserved quantities, and non-linear stability</td>
<td>490</td>
</tr>
<tr>
<td>16.3 The response to large-scale forcing</td>
<td>510</td>
</tr>
<tr>
<td>16.4 Selective decay on the sphere</td>
<td>516</td>
</tr>
<tr>
<td>16.5 Energy enstrophy statistical theory on the unit sphere</td>
<td>524</td>
</tr>
<tr>
<td>16.6 Statistical theories with a few constraints and statistical theories</td>
<td>536</td>
</tr>
<tr>
<td>with many constraints on the unit sphere</td>
<td></td>
</tr>
<tr>
<td>References</td>
<td>542</td>
</tr>
<tr>
<td>Appendix 1</td>
<td>542</td>
</tr>
<tr>
<td>Appendix 2</td>
<td>546</td>
</tr>
</tbody>
</table>

Index | 550 |