Contents

Preface
PART I: LINEAR REPRESENTATIONS

1. **Notation and generalities**

2. **Symmetric groups I**
 2.1 Gelfand–Zetlin bases
 2.2 Description of weights
 2.3 Formulas of Young and Murnaghan–Nakayama

3. **Degenerate affine Hecke algebra**
 3.1 The algebras
 3.2 Basis Theorem
 3.3 The center of \mathcal{H}_n
 3.4 Parabolic subalgebras
 3.5 Mackey Theorem
 3.6 Some (anti) automorphisms
 3.7 Duality
 3.8 Intertwining elements

4. **First results on \mathcal{H}_n-modules**
 4.1 Formal characters
 4.2 Central characters
 4.3 Kato’s Theorem
 4.4 Covering modules

5. **Crystal operators**
 5.1 Multiplicity-free socles
 5.2 Operators \tilde{e}_a and \tilde{f}_a

page ix
Contents

5.3 Independence of irreducible characters 49
5.4 Labels for irreducibles 51
5.5 Alternative descriptions of ϵ_a 51

6 Character calculations 54

6.1 Some irreducible induced modules 54
6.2 Calculations for small rank 57
6.3 Higher crystal operators 60

7 Integral representations and cyclotomic Hecke algebras 64

7.1 Integral representations 65
7.2 Some Lie theoretic notation 66
7.3 Degenerate cyclotomic Hecke algebras 68
7.4 The $*$-operation 69
7.5 Basis Theorem for cyclotomic Hecke algebras 70
7.6 Cyclotomic Mackey Theorem 73
7.7 Duality for cyclotomic algebras 74
7.8 Presentation for degenerate cyclotomic Hecke algebras 80

8 Functors e_i^Λ and f_i^Λ 82

8.1 New notation for blocks 83
8.2 Definitions 83
8.3 Divided powers 87
8.4 Functions φ_i^Λ 90
8.5 Alternative descriptions of φ_i^Λ 92
8.6 More on endomorphism algebras 99

9 Construction of U^+_Z and irreducible modules 103

9.1 Grothendieck groups 104
9.2 Hopf algebra structure 106
9.3 Contravariant form 109
9.4 Chevalley relations 112
9.5 Identification of $K(\infty)^*$, $K(\lambda)^*$, and $K(\lambda)$ 115
9.6 Blocks 117

10 Identification of the crystal 120

10.1 Final properties of $B(\infty)$ 120
10.2 Crystals 123
10.3 Identification of $B(\infty)$ and $B(\lambda)$ 126

11 Symmetric groups II 131

11.1 Description of the crystal graph 131
11.2 Main results on S_n 136
PART II: PROJECTIVE REPRESENTATIONS

12 Generalities on superalgebra
12.1 Superalgebras and supermodules 151
12.2 Schur's Lemma and Wedderburn's Theorem 157

13 Sergeev superalgebras
13.1 Twisted group algebras 166
13.2 Sergeev superalgebras 168

14 Affine Sergeev superalgebras
14.1 The superalgebras 174
14.2 Basis Theorem for \mathcal{X}_n 175
14.3 The center of \mathcal{X}_n 176
14.4 Parabolic subalgebras of \mathcal{X}_n 177
14.5 Mackey Theorem for \mathcal{X}_n 177
14.6 Some (anti) automorphisms of \mathcal{X}_n 178
14.7 Duality for \mathcal{X}_n-supermodules 179
14.8 Intertwining elements for \mathcal{X}_n 179

15 Integral representations and cyclotomic Sergeev algebras
15.1 Integral representations of \mathcal{X}_n 181
15.2 Some Lie theoretic notation 183
15.3 Cyclotomic Sergeev superalgebras 184
15.4 Basis Theorem for cyclotomic Sergeev superalgebras 185
15.5 Cyclotomic Mackey Theorem 187
15.6 Duality for cyclotomic superalgebras 188

16 First results on \mathcal{X}_n-modules
16.1 Formal characters of \mathcal{X}_n-modules 191
16.2 Central characters and blocks 193
16.3 Kato's Theorem for \mathcal{X}_n 194
16.4 Covering modules for \mathcal{X}_n 197

17 Crystal operators for \mathcal{X}_n
17.1 Multiplicity-free socles 200
17.2 Operators \tilde{e}_i and \tilde{f}_i 203
17.3 Independence of irreducible characters 204
17.4 Labels for irreducibles 205
18 Character calculations for X_n 206
18.1 Some irreducible induced supermodules 206
18.2 Calculations for small rank 208
18.3 Higher crystal operators 216

19 Operators e_i^λ and f_i^λ 219
19.1 i-induction and i-restriction 219
19.2 Operators e_i^λ and f_i^λ 221
19.3 Divided powers 225
19.4 Alternative descriptions of e_i 228
19.5 The $*$-operation 229
19.6 Functions ϕ_i^λ 229
19.7 Alternative descriptions of ϕ_i^λ 230

20 Construction of $U^+_{\mathbb{Z}}$ and irreducible modules 238
20.1 Grothendieck groups revisited 238
20.2 Hopf algebra structure 239
20.3 Shapovalov form 241
20.4 Chevalley relations 244
20.5 Identification of $K(\infty)^*$, $K(\lambda)^*$, and $K(\lambda)$ 246
20.6 Blocks of cyclotomic Sergeev superalgebras 247

21 Identification of the crystal 248

22 Double covers 250
22.1 Description of the crystal graph 250
22.2 Representations of Sergeev superalgebras 255
22.3 Spin representations of S_n 259

References 270

Index 275