Rock Mechanics for underground mining

Third edition

B. H. G. Brady
Emeritus Professor, The University of Western Australia, and Consulting Engineer, Montville, Queensland, Australia

E. T. Brown
Emeritus Professor, The University of Queensland, and Senior Consultant, Golder Associates Pty Ltd, Brisbane, Australia

KLUWER ACADEMIC PUBLISHERS
DORDRECHT / BOSTON / LONDON
Contents

Preface to the third edition xi
Preface to the second edition xiii
Preface to the first edition xv
Acknowledgements xvii

1 Rock mechanics and mining engineering 1
 1.1 General concepts 1
 1.2 Inherent complexities in rock mechanics 4
 1.3 Underground mining 6
 1.4 Functional interactions in mine engineering 9
 1.5 Implementation of a rock mechanics programme 13

2 Stress and infinitesimal strain 17
 2.1 Problem definition 17
 2.2 Force and stress 17
 2.3 Stress transformation 19
 2.4 Principal stresses and stress invariants 23
 2.5 Differential equations of static equilibrium 25
 2.6 Plane problems and biaxial stress 26
 2.7 Displacement and strain 29
 2.8 Principal strains 33
 2.9 Strain compatibility equations 34
 2.10 Stress-strain relations 34
 2.11 Cylindrical polar co-ordinates 37
 2.12 Geomechanics convention 39
 2.13 Graphical representation of biaxial stress 41
 Problems 43

3 Rock mass structure and characterisation 46
 3.1 Introduction 46
 3.2 Major types of structural features 47
 3.3 Important geomechanical properties of discontinuities 51
 3.4 Collecting structural data 57
 3.5 Presentation of structural data 69
 3.6 The hemispherical projection 71
 3.7 Rock mass classification 77
 Problems 82

4 Rock strength and deformability 85
 4.1 Introduction 85
 4.2 Concepts and definitions 86
CONTENTS

4.3 Behaviour of isotropic rock material in uniaxial compression
4.4 Behaviour of isotropic rock material in multiaxial compression
4.5 Strength criteria for isotropic rock material
4.6 Strength of anisotropic rock material in triaxial compression
4.7 Shear behaviour of discontinuities
4.8 Models of discontinuity strength and deformation
4.9 Behaviour of discontinuous rock masses

Problems

5 Pre-mining state of stress

5.1 Specification of the pre-mining state of stress
5.2 Factors influencing the in situ state of stress
5.3 Methods of in situ stress determination
5.4 Presentation of in situ stress measurement results
5.5 Results of in situ stress measurements

Problems

6 Methods of stress analysis

6.1 Analytical methods for mine design
6.2 Principles of classical stress analysis
6.3 Closed-form solutions for simple excavation shapes
6.4 Computational methods of stress analysis
6.5 The boundary element method
6.6 The finite element method
6.7 The distinct element method
6.8 Finite difference methods for continuous rock
6.9 Linked computational schemes

7 Excavation design in massive elastic rock

7.1 General principles of excavation design
7.2 Zone of influence of an excavation
7.3 Effect of planes of weakness on elastic stress distribution
7.4 Excavation shape and boundary stresses
7.5 Delineation of zones of rock failure
7.6 Support and reinforcement of massive rock

Problems

8 Excavation design in stratified rock

8.1 Design factors
8.2 Rock mass response to mining
8.3 Roof bed deformation mechanics
8.4 Roof design procedure for plane strain
8.5 Roof beam analysis for large vertical deflection

Problems
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Excavation design in blocky rock</td>
<td>242</td>
</tr>
<tr>
<td>9.1</td>
<td>Design factors</td>
<td>242</td>
</tr>
<tr>
<td>9.2</td>
<td>Identification of potential block failure modes – Block Theory</td>
<td>243</td>
</tr>
<tr>
<td>9.3</td>
<td>Symmetric triangular roof prism</td>
<td>255</td>
</tr>
<tr>
<td>9.4</td>
<td>Roof stability analysis for a tetrahedral block</td>
<td>261</td>
</tr>
<tr>
<td>9.5</td>
<td>Design practice in blocky rock</td>
<td>263</td>
</tr>
<tr>
<td>9.6</td>
<td>Stope wall design – the Mathews stability chart method</td>
<td>266</td>
</tr>
<tr>
<td>10</td>
<td>Energy, mine stability, mine seismicity and rockbursts</td>
<td>271</td>
</tr>
<tr>
<td>10.1</td>
<td>Mechanical relevance of energy changes</td>
<td>271</td>
</tr>
<tr>
<td>10.2</td>
<td>Mining consequences of energy changes</td>
<td>275</td>
</tr>
<tr>
<td>10.3</td>
<td>Energy transmission in rock</td>
<td>277</td>
</tr>
<tr>
<td>10.4</td>
<td>Spherical cavity in a hydrostatic stress field</td>
<td>285</td>
</tr>
<tr>
<td>10.5</td>
<td>General determination of released and excess energy</td>
<td>289</td>
</tr>
<tr>
<td>10.6</td>
<td>Mine stability and rockbursts</td>
<td>293</td>
</tr>
<tr>
<td>10.7</td>
<td>Instability due to pillar crushing</td>
<td>294</td>
</tr>
<tr>
<td>10.8</td>
<td>Thin tabular excavations</td>
<td>299</td>
</tr>
<tr>
<td>10.9</td>
<td>Instability due to fault slip</td>
<td>301</td>
</tr>
<tr>
<td>10.10</td>
<td>Characterisation of seismic events</td>
<td>304</td>
</tr>
<tr>
<td>11</td>
<td>Rock support and reinforcement</td>
<td>312</td>
</tr>
<tr>
<td>11.1</td>
<td>Terminology</td>
<td>312</td>
</tr>
<tr>
<td>11.2</td>
<td>Support and reinforcement principles</td>
<td>313</td>
</tr>
<tr>
<td>11.3</td>
<td>Rock–support interaction analysis</td>
<td>317</td>
</tr>
<tr>
<td>11.4</td>
<td>Pre-reinforcement</td>
<td>322</td>
</tr>
<tr>
<td>11.5</td>
<td>Support and reinforcement design</td>
<td>326</td>
</tr>
<tr>
<td>11.6</td>
<td>Materials and techniques</td>
<td>338</td>
</tr>
<tr>
<td>12</td>
<td>Mining methods and method selection</td>
<td>347</td>
</tr>
<tr>
<td>12.1</td>
<td>Mining excavations</td>
<td>347</td>
</tr>
<tr>
<td>12.2</td>
<td>Rock mass response to stoping activity</td>
<td>349</td>
</tr>
<tr>
<td>12.3</td>
<td>Orebody properties influencing mining method</td>
<td>352</td>
</tr>
<tr>
<td>12.4</td>
<td>Underground mining methods</td>
<td>355</td>
</tr>
<tr>
<td>12.5</td>
<td>Mining method selection</td>
<td>368</td>
</tr>
<tr>
<td>13</td>
<td>Pillar supported mining methods</td>
<td>370</td>
</tr>
<tr>
<td>13.1</td>
<td>Components of a supported mine structure</td>
<td>370</td>
</tr>
<tr>
<td>13.2</td>
<td>Field observations of pillar performance</td>
<td>372</td>
</tr>
<tr>
<td>13.3</td>
<td>Elementary analysis of pillar support</td>
<td>375</td>
</tr>
<tr>
<td>13.4</td>
<td>Design of a stope-and-pillar layout</td>
<td>384</td>
</tr>
<tr>
<td>13.5</td>
<td>Bearing capacity of roof and floor rocks</td>
<td>390</td>
</tr>
<tr>
<td>13.6</td>
<td>The Elliot Lake room-and-pillar mines</td>
<td>391</td>
</tr>
<tr>
<td>13.7</td>
<td>Stope-and-pillar design in irregular orebodies</td>
<td>396</td>
</tr>
<tr>
<td>13.8</td>
<td>Open stope-and-pillar design at Mount Charlotte</td>
<td>403</td>
</tr>
</tbody>
</table>
CONTENTS

13.9 Yielding pillars 404
Problems 406

14 Artificially supported mining methods 408

14.1 Techniques of artificial support 408
14.2 Backfill properties and placement 410
14.3 Design of mine backfill 416
14.4 Cut-and-fill stoping 418
14.5 Backfill applications in open and bench stoping 423
14.6 Reinforcement of open stope walls 427

15 Longwall and caving mining methods 430

15.1 Classification of longwall and caving mining methods 430
15.2 Longwall mining in hard rock 430
15.3 Longwall coal mining 440
15.4 Sublevel caving 453
15.5 Block caving 465
Problems 481

16 Mining-induced surface subsidence 484

16.1 Types and effects of mining-induced subsidence 484
16.2 Chimney caving 486
16.3 Sinkholes in carbonate rocks 495
16.4 Discontinuous subsidence associated with caving methods of mining 496
16.5 Continuous subsidence due to the mining of tabular orebodies 506

17 Blasting mechanics 518

17.1 Blasting processes in underground mining 518
17.2 Explosives 518
17.3 Elastic models of explosive–rock interaction 521
17.4 Phenomenology of rock breakage by explosives 522
17.5 Computational models of blasting 527
17.6 Perimeter blasting 527
17.7 Transient ground motion 532
17.8 Dynamic performance and design of underground excavations 536
17.9 Evaluation of explosive and blast performance 538

18 Monitoring rock mass performance 543

18.1 The purposes and nature of monitoring rock mass performance 543
18.2 Monitoring systems 544
18.3 Examples of monitoring rock mass performance 558
CONTENTS

Appendix A Basic constructions using the hemispherical projection

A.1 Projection of a line 568
A.2 Projection of the great circle and pole to a plane 568
A.3 Determination of the line of intersection of two planes 569
A.4 Determination of the angle between two lines in a plane 570
A.5 Determination of dip direction and true dip 571
A.6 Rotation about an inclined axis 572

Appendix B Stresses and displacements induced by point and infinite line loads in an infinite, isotropic, elastic continuum

B.1 A point load (the Kelvin equations) 574
B.2 An infinite line load 575

Appendix C Calculation sequences for rock-support interaction analysis

C.1 Scope 575
C.2 Required support line calculations 575
C.3 Available support line calculations 577

Appendix D Limiting equilibrium analysis of progressive hangingwall caving

D.1 Derivation of equations 580
D.2 Calculation sequence 584

Answers to problems
References 589
Index 614