GENERALIZED INVERSE OPERATORS AND FREDHOLM BOUNDARY-VALUE PROBLEMS

A.A. Boichuk and A.M. Samoilenko
Translated by P.V. Malyshev and D.V. Malyshev

VSP
Utrecht • Boston, 2004
Contents

NOTATION ix

PREFACE xi

1. PRELIMINARY INFORMATION 1
 1.1. Metric and Normed Spaces ... 1
 1.2. Hilbert Spaces .. 6
 1.3. Banach Spaces .. 10
 1.4. Linear Operators .. 14
 1.5. Unilateral Inverse, Generalized Inverse, and Pseudo-Inverse Operators .. 25

2. GENERALIZED INVERSE OPERATORS IN BANACH SPACES 29
 2.1. Finite-Dimensional Operators .. 29
 2.2. An Analog of the Schmidt Lemma for Fredholm Operators 35
 2.3. Generalized Inverse Operators for Bounded Linear Fredholm Operators .. 39
 2.4. Generalized Inverse Matrices .. 42

3. PSEUDOINVERSE OPERATORS IN HILBERT SPACES 47
 3.1. Orthoprojectors, Their Properties and Relation to Finite-Dimensional Operators ... 47
 3.2. An Analog of the Schmidt Lemma for Fredholm Operators 54
 3.3. Left and Right Pseudoinverse Operators for Bounded Linear Fredholm Operators .. 60
 3.4. PseuoInverse Operators for Bounded Linear Fredholm Operators 62
 3.5. Inverse Operators for Fredholm Operators of Index Zero 66
 3.6. A Criterion for Solvability and a Representation of Solutions of Fredholm Linear Operator Equations 68
3.7. Integral Fredholm Equations with Degenerate Kernels under Critical Conditions ... 73
3.8. Pseudoinverse Matrices ... 76

4. BOUNDARY-VALUE PROBLEMS FOR OPERATOR EQUATIONS 83
4.1. Linear Boundary-Value Problems for Fredholm Operator Equations .. 84
4.2. Generalized Green Operator .. 88
4.3. Examples .. 93

5. BOUNDARY-VALUE PROBLEMS FOR SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS 101
5.1. Linear Boundary-Value Problems. Criterion of Solvability ... 101
5.2. Weakly Nonlinear Boundary-Value Problems ... 113
5.3. Autonomous Boundary-Value Problems ... 145
5.4. General Scheme of Investigation of Boundary-Value Problems ... 156
5.5. Periodic Solutions of the Mathieu, Riccati, and Van der Pol Equations ... 158
5.6. Differential Systems with Delay ... 170

6. IMPULSIVE BOUNDARY-VALUE PROBLEMS FOR SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS 195
6.1. Linear Boundary-Value Problems. Criterion of Solvability ... 196
6.2. Generalized Green Operator for Semihomogeneous Boundary-Value Problem and Its Properties ... 205
6.3. Regularization of Linear Impulsive Boundary-Value Problems ... 208
6.4. Conditions for the Appearance of Solutions of Weakly Perturbed Linear Boundary-Value Problems ... 209
6.5. Weakly Nonlinear Boundary-Value Problems ... 217
6.6. Critical Case. Necessary Condition for the Existence of Solutions ... 221
6.7. Sufficient Condition for the Existence of Solutions.
 Iterative Algorithm for the Construction of Solutions ... 223
6.8. Critical Case of the Second Order ... 237
7. SOLUTIONS OF DIFFERENTIAL AND DIFFERENCE SYSTEMS BOUNDED ON THE ENTIRE REAL AXIS 257

7.1. Solutions of Linear Weakly Perturbed Systems Bounded on the Entire Real Axis 257
7.2. Nonlinear Systems 277
7.3. Solutions of Linear and Nonlinear Difference Equations Bounded on the Entire Real Axis 286

REFERENCES 305