CONTENTS

PREFACE TO THE SECOND EDITION

PREFACE

0. Introduction and Survey of Observations

1. Physical Conditions in Stellar Interiors
Estimates of Interior Values of Pressure and Temperature, 18. 3. Effect
of Departures from Hydrostatic Equilibrium, 25.

2. Radiation Theory
1. Specific Intensity, 29. 1a. Integrated Intensity, 30. 1b. Constancy of \(I_v \)
Along Every Ray Path in Free Space, 31. 1c. Constancy of \(I_v/\mu_v^2 \) Along
Every Ray Path for Variable Refractive Index, 32. 2. Net Flux, 34. 3.
Energy Density of Radiation, 37. 4. Average Intensity, 39. 5. Radiation
Pressure, 39. 5a. Integrated Radiation Pressure, 42. 5b. Pressure Tensor,
42. 6. Mass Emission Coefficient, 47. 7. Mass Absorption Coefficient,
Inclusion of the Time Derivative, 69. 9b. Equation of Transfer in Terms
of Atomic Parameters, 70. 10. Elementary Theory of Dispersion, 73.
10a. Plane Electromagnetic Waves, 74. 10b. Relation Between
Attenuation and “True” Absorption, 78. 10c. Electromagnetic Field
Energy in Dispersive Media, 81. 10d. Lorentz-Lorenz Model for a
Dielectric, 83. 11. The “Directional Gradient” and Some of Its
Properties, 88.

3. Thermodynamic Equilibrium
1. General Discussion of Thermodynamic Equilibrium, 92. 2. Basic
Distribution Law for a System in Statistical Equilibrium, 98. 3.
Statistical Weight, 99. 3a. For Discrete Energy Levels, 99. 3b. For
Continuous Energy Levels, 100. 4. Distribution Laws for Matter, 104.

xv
CONTENTS

4. **Local Thermodynamic Equilibrium (LTE)** 118
 1. Equation of Transfer for LTE, 121. 2. Departure of S/v_0^2 from $B_0(T)$, Assuming LTE, 127.

5. **Thermal and Radiative Equilibrium** 130

6. **Solution of the Equation of Transfer** 140

7. **Conditions for LTE** 159

Appendix 7-A. **Solving the Equation of Transfer** 172

8. **Radiative Temperature Gradient** 186

9. **Some Thermodynamic Relations** 198
(or Reversible) Process, 203. 6. Infinitesimal Changes, 203. 7. Case in Which

Appendix 9-A. Semi-Degenerate Equations of State

24. Semi-Degenerate Equations of State, 249. 1. Meaning of • Degeneracy of Electron Gas, 251. 3. Mean Molecular Weight Per Free Electron, 261. 4. General Expressions for Electron Density, Pressure, Internal Energy, and Entropy, 263. 5. Non-Relativistic (N.R.) and Extreme Relativistic (E.R.) Regimes for Arbitrary Degree of Degeneracy, 271. 5a. N.R. Regime ($\beta \ll 1, \eta$ finite), 271. 5b. E.R. Regime ($\beta \gg 1, \eta$ finite), 273. 6. Completely Degenerate Case ($\eta = \infty$), 275. 6a. N.R. Regime ($\eta\beta \ll 1, \eta = \infty$), 275. 6b. E.R. Regime ($\eta\beta \gg 1, \eta = \infty$), 279. 6c. Partial Relativistic, Completely Degenerate Regime ($\eta\beta \sim 1, \eta = \infty$), 280. 7. Evaluation of the $F(t, \beta)$, 284. 7a. Large Degeneracy ($\eta \gg 1$), Arbitrarily Relativistic (Arbitrary β), 284. 7b. Small Degeneracy ($\eta \leq 1$), Arbitrarily Relativistic (Arbitrary β), 286. 7c. Partial Degeneracy, Arbitrarily Relativistic (Arbitrary β), 288. 8. Criteria for Degeneracy and Regions of Degeneracy on the $p-T$ Plane, 289. 8a. Criteria for Degeneracy, 289. 8b. Regions of Degeneracy on the $p-T$ Plane, 293. 9. Effect of Electron-Positron Pairs, 298. 9a. Discussion of Degeneracy and Conditions for Neglect of e^\pm Pairs, 303. 9b. Pressure, Internal Energy, and Entropy, 310. 9c. Gammas for a Mixture Consisting of e^\pm Pairs and Black Body Radiation, 316.

10. Some Results of Kinetic Theory and Statistical Mechanics

Monatomic Gases with Only Three Degrees of Freedom per Particle, 339.
7b. More General Perfect Gases with Constant Specific Heats, 340.

Appendix 10-A. Non-ideal Gas Effects 342

11. Importance of Radiation Pressure in Stellar Interiors 347

12. Polytropic Changes 351

13. Stability of the Radiative Gradient 356

Appendix 13-A. Stability of the Radiative Gradient 375

14. Mixing Length Theory of Convection 377

Appendix 14-A. Non-local and Time-dependent Convection 422
15. Ionization of Material in Stellar Interiors 437

1. Mean Molecular Weight, 438. 2. Electron Density, 441. 3.
Calculation of n_e, 442. 4. Excitation and Ionization Energy, 445. 5.
Electrostatic Corrections, 446. 5a. Depression of the Continuum, 447.
5b. Electrostatic Corrections to the Pressure Equation of State, 452. 6.
Numerical Results for a Particular Chemical Composition, 460.

Appendix 15-A. Equation of State in Stellar Interiors 464

Equation of State Tables for Moderate Densities, 465. 2a. The MHD
Equation of State, 465. 2b. The OPAL Equation of State, 467. 3. The
EoS at High Stellar Densities, 470. 4. Comparison of Different EoS,
472. 5. Other Sources for EoS and Data, 473.

16. Stellar Opacity 475

1. Photo Effect, 477. 2. Free-Free Transitions (Bremstrahlung), 481. 3.
Thomson Scattering (Coherent Compton Effect), 484. 4.
Monochromatic Mass Absorption Coefficient, 486. 5. Rosseland Mean
Opacity, 493. 6. Approximate Formulae, 494. 6a. Thomson Electron
Scattering Opacity, 495. 6b. Free-Free Opacity, 498. 6c. Bound-Free
Opacity, 500. 6d. Relative Magnitudes, 504. 6e. Interpolation Formulae,
Bound-Bound Absorption, 512. 8b. Negative Ion Absorption, 513. 8c.
Molecular Absorption, 514. 8d. Rayleigh Scattering, 514. 8e. Raman
Scattering, 516. 8f. Photo-Excitation to Auto-Ionizing States, 516. 8g.
Pair Production, 517. 9. A. N. Cox Opacity Results, 518.

Appendix 16-A. Stellar Opacity 520

1. Atomic Data, 521. 1a. Line Profiles, 523. 1b. Oscillator Strengths,
523. 1c. Mean Opacities, 524. 1d. Resulting Data, 524. 2. Rosseland
Mean Opacities, 525. 2a. Summary of OPAL Opacities, 525. 2b.
Sample Tables, 528. 2c. Comparisons of Results, 530. 3. Additional
Opacities, 532. 3a. Molecular Opacities, 532. 3b. Electron Conduction
Opacities, 533. 4. Combined Tables Ready for Use, 534. 5. Successes of
the New Opacities, 536.

17. Stellar Energy Sources 537

1. Gravitational Potential Energy of a Star, 539. 2. The Virial Theorem,
541. 3. Internal Energy and Total Energy of a Star, 550. 4. Gravitational
Contraction, 551. 5. Some Conditions for Gravitational Contraction,
Nuclear Energy Production, 561. 8. Basic Properties of Atomic Nuclei,
562. 9. Bohr Picture of a Nuclear Reaction, 568. 9a. Occurrence of

Appendix 17-A. Stellar Energy Sources 663

18. The Sun and the Solar Model 683

APPENDICES
A1. Physical and Astronomical Constants 712
REFERENCE LIST AND AUTHOR INDEX 713
ADDITIONAL BIBLIOGRAPHY 731
SUBJECT INDEX 752