NONLINEAR GRAVITODYNAMICS
The Lense-Thirring Effect
A documentary introduction to current research

Editors
Remo Ruffini
Costantino Sigismondi
University of Rome "La Sapienza", Italy
CONTENTS

Foreword

The Contributions to the WFM3 and INW1
Introduction to Nonlinear Gravitodynamics: The Lense-Thirring Effect
Remo Ruffini

Section A: Equations of Motion of Spinning Particles in Electrodynamics and General Relativity

Some considerations on the varieties of frame dragging
Kenneth Nordtvedt

Equations of Motion of Spinning Relativistic Particle in External Fields
I. B. Khriplovich and A. A. Pomeransky

Equations with Intrinsic Rotation in Gravitational Theory
Leopold Halpern

Spinning Particles in the Kerr Field
O. Semerák

Energy First Integral for Spinning Particles in the Schwarzschild Background
D. Bini, G. Gemelli and R. Ruffini

Nongeodesic Motion of Charged Spinning Test Particles
D. Bini, G. Gemelli and R. Ruffini

Section B: Inertial Forces and Gravitoelectromagnetism

Absolute and Relative Frenet-Serret Frames for Accelerated Black Hole Circular Orbits
D. Bini, R. T. Jantzen and A. Merloni
Centripetal Acceleration and Centrifugal Force in General Relativity
D. Bini, F. De Felice and R. T. Jantzen

On the (Non)Existence of a Gravitomagnetic Dynamo
J.-F. Pascual-Sánchez

Rotation of the Polarization Plane in the Gravitational Field of Rotating Objects
V. Perlick

Section C: The GP-B Mission: The Orbiting Gyroscope Experiment around the Earth

General Treatment of Geodetic and Lense-Thirring Effects on an Orbiting Gyroscope
R. J. Adler and A. S. Silbergleit

Classical Torque Errors in Gravity Probe B Experiment
A. S. Silbergleit, M. I. Heifetz and G. M. Keiser

Data Reduction in the Gravity Probe B Experiment: Optimal Estimation and Filtering
M. I. Heifetz, G. M. Keiser and A. S. Silbergleit

Section D: Probing the Lense-Thirring Effect around the Earth with Twin Satellites

The Gravitomagnetic Field and its Measurement with the Lageos Satellites
Ignazio Ciufolini and Erricos Pavlis

Lense-Thirring Precession Determination from Laser Ranging to Artificial Satellites
J. C. Ries, R. J. Eanes and B. D. Tapley

On Gravitomagnetic and Rotational Analogue of the Hall Effect: A Possibility to Detect Lense-Thirring Field of Earth
B. J. Ahmedov
Determination of the PPN Parameter γ Through Geodetic VLBI
 M. Cataldo, L. Guerriero, G. Bianco, R. Lanotte and F. Dilettuso 219

Quantum Tests of Lense-Thirring Type Effects
 C. Lämmerzahl 225

Section E: Probing the Gravitomagnetic Lense-Thirring effect with Neutron Stars and Black Holes

Relativistic Periastron and Nodal Precession and Quasi-Periodic Oscillations from Low Mass X-Ray Binaries
 L. Stella 235

On Gravitomagnetic Precession and QPO in Black Hole Candidates
 Wei Cui, Wan Chen and S. N. Zhang 248

Millisecond Phenomena in Accreting Neutron Stars – An Update
 M. Van Der Klis 262

Variability of Black-Hole Binary Sources and Lense-Thirring Orbital Precession
 V. Karas, O. Semerák and F. De Felice 282

Magnetospheres Around Rotating Black Holes
 M. Dovčiak and V. Karas 288

Lense-Thirring Effect in the Superfluid Inside Neutron Stars
 H. Casini and R. Montemayor 296

General Relativistic Calculations of Precession Around Rapidly Rotating Neutron Stars
 Sharon M. Morsink 303

Relativistic Diskoseismology: C-Modes and the Lense-Thirring Effect
 A.S. Silbergleit and R.V. Wagoner 316

Generation and Evolution of Magnetic Fields in the Gravitomagnetic Field of a Kerr Black Hole
 Ramon Khanna 329
Lense-Thirring Precession of Accretion Disks and Quasi-Periodic Oscillations in X-Ray Binaries

D. Markovic and F. K. Lamb 336

Classical Papers

On the Gravitational Effects of Rotating Masses: The Thirring-Lense Papers

B. Mashhoon, F. W. Hehl and D. S. Theiss (1984) 349

An Example of A New Type of Cosmological Solutions of Einstein's Field Equations of Gravitation

K. Gödel (1949) 389

Spinning Test-Particles in General Relativity. I

A. Papapetrou (1951) 393

Spinning Test-Particles in General Relativity. II

E. Corinaldesi and A. Papapetrou (1951) 404

Proposal for a Satellite Test of the Coriolis Prediction of General Relativity

G. E. Pugh (1959) 414

Motion of a Gyroscope According to Einstein's Theory of Gravitation

L. I. Schiff (1960) 427

The Gyroscope Experiment I. General Description and Analysis of Gyroscope Performance

C. W. F. Everitt (1974) 439

Bound Geodesics in the Kerr Metric

D. C. Wilkins (1972) 469

Generalized Wilkins Effect and Selected Orbits in a Kerr-Newmann Geometry

M. Johnston and R. Ruffini (1974) 478
Sur Certaines Vérifications Nouvelles de la Relativité Générale Rendues Possibles par la Découverte d’un Pulsar Membre d’un Système Binaire

Possible Experiment with Two Counter-Orbiting Drag-Free Satellites to Obtain a New Test of Einstein’s General Theory of Relativity and Improved Measurements in Geodesy

R. A. Van Patten and C. W. F. Everitt (1976) 487

Contemporary Papers

Measurement of the Lense-Thirring Drag on High-Altitude, Laser-Ranged Artificial Satellites

I. Ciufolini (1986) 493

Measurement of the de Sitter Precession of the Moon: A Relativistic Three-Body Effect

Determination of the Geometry of the PSR B1913+16 System by Geodetic Precession

M. Kramer (1998) 505