CONTENTS

Introduction to the series v

Chapter 1
Introduction
KINGSLEY E. HAYNES, PETER R. STOPHER, KENNETH J. BUTTON and
DAVID A. HENSHER 1
1. Introduction 1
2. Recent trends in analysis 2
3. GPS, GIS and other acronyms 4
4. Land use and transportation institutions 5
5. The Handbook 7

Part 1. Transport and Geography 11

Chapter 2
Recent Developments in US Transport Geography
WILLIAM R. BLACK 13
1. Some definitions 13
2. Historical background 13
3. Transport geography today 16
4. Recent developments in the field 18
4.1. Deregulation 18
4.2. Activity analysis 19
4.3. Sustainable transport 19
4.4. Environmental justice 20
4.5. Economic development 21
4.6. Geographic information systems 22
4.7. Network design 23
5. Some concluding thoughts 24
6. Closure 24
References 25

Chapter 3
Institutions, Land Use and Transportation
ROGER R. STOUGH 27
1. Introduction 27
2. Theory and recent changes in land use and transportation 28
Chapter 6
Economic Development and Transport Hubs
KENNETH J. BUTTON 77

1. Introduction 77
2. Airports as hubs 78
3. Regional impacts of hub airport 83
 3.1. Primary effects 83
 3.2. Income multiplier effects 83
 3.3. Tertiary effects 84
 3.4. Perpetuity effects 84
4. Empirical analysis 85
 4.1. Surveys and questionnaires 85
 4.2. Multiplier analysis 87
 4.3. Econometric models 88
5. International airline hubs 89
6. Conclusions 94
References 95

Chapter 7
Transport and Spatial Clustering
JEAN H.P. PAELINCK 97

1. Introduction 97
2. Preliminary concepts 98
3. Market approach 99
4. Non-market approach 102
5. Synthesis 104
6. Conclusions 106
References 109

Chapter 8
Connecting Mass Transit and Employment
THOMAS W. SANCHEZ 111

1. Introduction 111
2. Elements of travel demand 112
 2.1. Trip purpose 112
 2.2. Trip timing 113
 2.3. Trip origins and destinations 114
 2.4. Trip mode 114
 2.5. Available routes 115
 2.6. Trip frequency 116
3. Work trip factors 116
Chapter 11

Lowry-type Land Use Models
ALAN J. HOROWITZ

1. Introduction
2. Land use model concept: urban form and land rents
 2.1. Urban form and land rents
 2.2. Agglomeration
3. Residential location models
 3.1. Basic form
 3.2. Population segmentation
 3.3. Measures of attractiveness
 3.4. Land constraints
 3.5. The exogenous workplace
 3.6. Multimodal applications
4. Overview of the Lowry model
 4.1. Typical data requirements
 4.2. Anticipated results and cautions
 4.3. Calibration issues
 4.4. Equilibrium conditions
 4.5. Deterrence function parameters
 4.6. Disutility and the value of time
 4.7. Definition of basic employment
5. Derivation of the Lowry–Garin model
 5.1. Adjustments to residential attractiveness
 5.2. Adjustments to service attractiveness
6. Iterating a land use model with a travel-forecasting model
7. Critique
8. Closure

Chapter 12

Econometric Models of Land Use and Transportation
MARCIAL ECHENIQUE

1. Introduction
2. Theoretical foundations
3. A general model of trade and location
 3.1. Functional relationships
 3.2. Spatial relationships
Chapter 13
Introduction to Urban Simulation: Design and Development of Operational Models
PAUL WADDELL and GUDMUNDUR F. ULFARSSON
1. The context and objectives for urban simulation
2. The design and implementation of an operational urban simulation system
 2.1. Assess the institutional, political, and technical context
 2.2. Assess the stakeholders, value conflicts, and public policy objectives
 2.3. Develop measurable benchmarks for the objectives
 2.4. Inventory the policies to be tested
 2.5. Map the policy inputs to outcomes
 2.6. Assess the model requirements
 2.7. Make preliminary model design choices
 2.8. Select the modeling approach
 2.9. Prepare the input data
 2.10. Develop the model specification
 2.11. Estimate the model parameters
 2.12. Calibrate the model system
 2.13. Develop the software application
 2.14. Validate the model system
 2.15. Operational use
3. Conclusion
Acknowledgments
References

Chapter 14
Evolutionary Approaches to Transport and Spatial Systems
AURA REGGIANI
1. Introduction
2. Spatial choice and processes: the role of spatial interaction models
4. Extensions
 4.1. Imperfect markets
 4.2. Dynamics

5. An example: the spatial effects of trans-European road networks

6. Conclusions

References

Part 4. Data

Chapter 17
Spatial Data Issues: A Historical Perspective
PETER R. STOPHER

1. Introduction
2. Traffic analysis zones
3. Traffic networks
 3.1. Bus networks
 3.2. Micro-networks
4. Interactions between zones and networks
 4.1. Zone size and networks
 4.2. The use of a GIS as a network platform
 4.3. Network detail and zone size
5. Conclusions

References

Chapter 18
Linking Spatial and Transportation Data
BRUCE D. SPEAR

1. Introduction
2. GISs and transportation models – a US historical perspective
 2.1. Origins of GISs
 2.2. Origins of transportation models
 2.3. Development of commercial software
 2.4. TIGER and GISs
 2.5. The Census Transportation Planning Package and GIS
3. Conceptual differences between GISs and transportation models
 3.1. GIS spatial objects and relationships
 3.2. Network objects and relationships
 3.3. Translating between linear spatial objects and networks
4. Other transportation data structures
 4.1. Routes
 4.2. Linear referencing
 4.3. Matrices
Contents

4.4. Dynamic spatial objects 324
5. Conclusions 325
References 326

Part 5. GIS Applications 327

Chapter 19
The Role of GIS in Land Use and Transport Planning
HOWARD L. SLAVIN 329
1. Introduction 329
2. GIS in land use planning 330
 2.1. Data development, presentation, and access 330
 2.2. Data access 330
 2.3. Urban information systems and urban analysis 334
3. GIS in land use modeling 335
4. GIS in transport planning 337
 4.1. An overview of GIS-T functionality 337
5. GIS in travel-demand modeling 344
 5.1. GIS-T use in modeling: the linkage-integration debate 344
 5.2. GIS-T application to modeling activities and components 346
6. Concluding remarks 355
References 356

Chapter 20
The Role of GIS in Routing and Logistics
JOHN C. SUTTON and JOHAN VISSER 357
1. Introduction: why use GIS in routing and logistics? 357
2. GIS routing and logistics capabilities 358
 2.1. Vehicle routing/dispatching 361
 2.2. Arc routing 361
 2.3. Network flow and distribution analysis 361
 2.4. Location and allocation models 362
3. Logistics issues 364
4. Public policy-making 365
 4.1. Freight modeling 367
 4.2. Spatial studies 367
5. Real-time routing and logistics 369
 5.1. From static to dynamic information 369
 5.2. Convergence of GIS and location aware technologies 370
6. Software 370
 6.1. GIS limitations 371
7. Conclusion 373
References 374
Chapter 21
GIS and the Collection of Travel Survey Data
STEPHEN GREAVES 375

1. Introduction 375
2. Use of GIS in travel surveys 376
3. Geocoding of survey data 377
 3.1. Automated address matching and GIS 378
 3.2. How the automated geocoding process works 378
 3.3. Partial matches 380
 3.4. Checking of geocodes 381
4. Developing the databases 382
 4.1. The reference databases 382
 4.2. Developing the target database 383
 4.3. Spatial bias and spatial stratification 388
5. Summary and future directions 389
References 390

Chapter 22
GIS and Network Analysis
MANFRED M. FISCHER 391

1. Introduction 391
2. Network representation and GIS-T network data models 392
 2.1. Terminology 392
 2.2. The network data model 392
 2.3. Non-planar networks and the turn-table 395
 2.4. Linear referencing systems and dynamic segmentation 396
 2.5. Lanes and navigable data models 398
3. Vehicle routing within a network: problems and algorithms 400
 3.1. The traveling-salesman problem 400
 3.2. The vehicle-routing problem 402
 3.3. Constrained shortest-path problems 405
4. Concluding remarks 407
References 407

Part 6. GPS Applications 409

Chapter 23
Defining GPS and its Capabilities
JEAN WOLF 411

1. Introduction 411
2. The Global Positioning System 412
Chapter 24

GPS, Location, and Household Travel
PETER R. STOPHER 433

1. Introduction 433
2. GPS as a solution 434
 2.1. Types of GPS device 435
 2.2. What GPS can do 438
 2.3. What GPS cannot do 440
3. Processing GPS data 441
 3.1. Problems with GPS data 442
 3.2. Accuracy of GPS 443
 3.3. Wearable GPS devices 444
4. The future of GPS 445
 4.1. Privacy 447
 4.2. Respondent burden 447
5. Conclusions 448

References 449

Chapter 25

GPS and Vehicular Travel
GEOFF ROSE 451

1. Introduction 451
Chapter 26

Traffic Monitoring Using GPS
CESAR QUIROGA

1. Introduction
2. Measuring travel times, speeds, and delays using GPS
 2.1. Generating routes, checkpoints, and segments
 2.2. Linearly referencing GPS data
 2.3. Calculating segment travel times, speeds, and delays
 2.4. Calculating intersection delays
3. Data management
 3.1. Architecture
 3.2. Linear referencing and computation of travel time
 3.3. Intersection delay
4. Summary
References

Chapter 27

Other Transportation Applications of GPS
SHAUNA L. HALLMARK

1. Introduction
2. Centerline mapping
3. Inventory management
 3.1. General
 3.2. Mobile mapping systems
4. Automatic vehicle location
References
Contents

4.1. In-vehicle navigation systems 494
4.2. Fleet management 494
4.3. Concept winter vehicle 495

5. Safety 495
5.1. Crash location 495
5.2. On-board crash notification systems 496

6. Locating environmentally sensitive features 497

7. Summary 497

References 498

Part 7. Spatial Cognition 499

Chapter 28
Cognitive Maps and Urban Travel
REGINALD G. GOLLEDGE and TOMMY GARLING 501

1. Introduction 501
2. Basic concepts 501
 2.1. Cognitive maps 501
 2.2. Cognitive mapping 502
3. Transportation issues 502
 3.1. Cognizing transportation networks 502
 3.2. Travel behavior 504
 3.3. Path selection criteria 506
 3.4. Navigation and wayfinding 506
 3.5. Route learning 507
 3.6. The role of trip purpose 508
 3.7. Travel guidance 508
4. Incorporating cognitive maps into travel choice models 509
5. Conclusion 510

References 511

Chapter 29
Spatial Processes
RYUICHI KITAMURA 513

1. Introduction 513
2. Trip-based studies and their limitations 515
3. Trip-chaining analyses 518
4. Classification approaches 522
5. Simulation approaches 524

References 528
Chapter 30

Mental Maps
LISA WESTON and SUSAN HANDY 533

1. Introduction 533
2. What are mental maps? 535
3. How do people create mental maps? 536
4. How have mental maps been used? 540
5. How can transportation professionals use mental maps? 543
6. Conclusions 544
References 544

Part 8. Geosimulation 547

Chapter 31

Geosimulation, Automata, and Traffic Modeling
PAUL M. TORRENS 549

1. Introduction 549
2. Recent developments in the research landscape 549
3. The emerging geosimulation approach 550
4. Automata as geosimulation tools 552
5. Modeling vehicular traffic 554
 5.1. Spatial topology 554
 5.2. Entity descriptions 555
 5.3. Neighborhood definitions 555
 5.4. Time 556
 5.5. Rules 556
6. Modeling pedestrian traffic 557
 6.1. Entities 558
 6.2. Spatial topology 559
 6.3. Time 559
 6.4. Neighborhoods 559
 6.5. Rules 560
7. Conclusion 561
References 562

Part 9. Networks 565

Chapter 32

Design and Analysis of Transport Networks
HAI YANG and XIAONING ZHANG 567

1. Introduction 567
2. Formulations of network design problems 569
Contents

Part 10. Time Use 627

Chapter 35
Time Use and Activity Systems
ANDREW S. HARVEY 629
1. Introduction 629
2. Activity systems approach 629
3. Time use and travel behavior 631
 3.1. The time use perspective 631
 3.2. Travel perspective 632
4. Time use measurement 633
 4.1. Time use data collection methodology and instruments 637
 4.2. Activities and context 638
5. Time use analysis 640
 5.1. Unit of analysis 640
 5.2. Activity measures 642
6. Advantages and challenges of the time use approach 644
7. Conclusions 645
References 645

Chapter 36
Activities in Space and Time
HARVEY J. MILLER 647
1. Introduction 647
2. Time geography 648
 2.1. Activities in space and time 648
 2.2. Space–time path and prism 649
 2.3. The individual and space–time aggregates 651
 2.4. Contrasts with time use and activity analysis 651
 2.5. Time geography and transportation research 652
3. Information technologies and the new time geography 652
 3.1. Representation of space–time environments 653
 3.2. New methods for data collection 655
 3.3. New methods for data analysis 656
 3.4. Extending time geography to cyberspace 657
4. Conclusion 658
References 658

Author Index 661

Subject Index 669