CONTENTS

Preface viii

1 **Basic Theory** 1

1.1 Orthogonal polynomials 1

1.1.1 Definition and existence 1

1.1.2 Examples 4

1.2 Properties of orthogonal polynomials 6

1.2.1 Symmetry 6

1.2.2 Zeros 7

1.2.3 Discrete orthogonality 8

1.2.4 Extremal properties 8

1.3 Three-term recurrence relation 10

1.3.1 Monic orthogonal polynomials 10

1.3.2 Orthonormal polynomials 12

1.3.3 Christoffel–Darboux formulae 14

1.3.4 Continued fractions 15

1.3.5 The recurrence relation outside the support interval 17

1.4 Quadrature rules 20

1.4.1 Interpolatory quadrature rules and beyond 21

1.4.2 Gauss-type quadrature rules 22

1.5 Classical orthogonal polynomials 26

1.5.1 Classical orthogonal polynomials of a continuous variable 27

1.5.2 Classical orthogonal polynomials of a discrete variable 32

1.6 Kernel polynomials 35

1.6.1 Existence and elementary properties 36

1.6.2 Recurrence relation 38

1.7 Sobolev orthogonal polynomials 40

1.7.1 Definition and properties 41

1.7.2 Recurrence relation and zeros 41

1.8 Orthogonal polynomials on the semicircle 43

1.8.1 Definition, existence, and representation 43

1.8.2 Recurrence relation 45

1.8.3 Zeros 47

1.9 Notes to Chapter 1 49
CONTENTS

2 Computational Methods 52
 2.1 Moment-based methods 52
 2.1.1 Classical approach via moment determinants 52
 2.1.2 Condition of nonlinear maps 55
 2.1.3 The moment maps G_n and K_n 57
 2.1.4 Condition of $G_n : \mu \mapsto \gamma$ 59
 2.1.5 Condition of $G_n : m \mapsto \gamma$ 64
 2.1.6 Condition of $K_n : m \mapsto \rho$ 70
 2.1.7 Modified Chebyshev algorithm 76
 2.1.8 Finite expansions in orthogonal polynomials 78
 2.1.9 Examples 82
 2.2 Discretization methods 90
 2.2.1 Convergence of discrete orthogonal polynomials
to continuous ones 90
 2.2.2 A general-purpose discretization procedure 93
 2.2.3 Computing the recursion coefficients of a
discrete measure 95
 2.2.4 A multiple-component discretization method 99
 2.2.5 Examples 101
 2.2.6 Discretized modified Chebyshev algorithm 111
 2.3 Computing Cauchy integrals of orthogonal
polynomials 112
 2.3.1 Characterization in terms of minimal solutions 112
 2.3.2 A continued fraction algorithm 113
 2.3.3 Examples 116
 2.4 Modification algorithms 121
 2.4.1 Christoffel and generalized Christoffel theorems 122
 2.4.2 Linear factors 124
 2.4.3 Quadratic factors 125
 2.4.4 Linear divisors 128
 2.4.5 Quadratic divisors 130
 2.4.6 Examples 133
 2.5 Computing Sobolev orthogonal polynomials 138
 2.5.1 Algorithm based on moment information 139
 2.5.2 Stieltjes-type algorithm < 141
 2.5.3 Zeros 143
 2.5.4 Finite expansions in Sobolev orthogonal
polynomials 146
 2.6 Notes to Chapter 2 148

3 Applications 152
 3.1 Quadrature 152
 3.1.1 Computation of Gauss-type quadrature
formulae 152
CONTENTS

3.1.2 Gauss–Kronrod quadrature formulae and their computation
3.1.3 Gauss–Turan quadrature formulae and their computation
3.1.4 Quadrature formulae based on rational functions
3.1.5 Cauchy principal value integrals
3.1.6 Polynomials orthogonal on several intervals
3.1.7 Quadrature estimation of matrix functionals
3.2 Least squares approximation
 3.2.1 Classical least squares approximation
 3.2.2 Constrained least squares approximation
 3.2.3 Least squares approximation in Sobolev spaces
3.3 Moment-preserving spline approximation
 3.3.1 Approximation on the positive real line
 3.3.2 Approximation on a compact interval
3.4 Slowly convergent series
 3.4.1 Series generated by a Laplace transform
 3.4.2 “Alternating” series generated by a Laplace transform
 3.4.3 Series generated by the derivative of a Laplace transform
 3.4.4 “Alternating” series generated by the derivative of a Laplace transform
 3.4.5 Slowly convergent series occurring in plate contact problems
3.5 Notes to Chapter 3

Bibliography

Index