CONTENTS

1 Fundamental concepts and equations

1.1 Some mathematical concepts and notation

- 1.1.1 Basic notation
- 1.1.2 Some useful inequalities in \mathbb{R}^N
- 1.1.3 Differential operators
- 1.1.4 Gronwall’s lemma
- 1.1.5 Implicit functions
- 1.1.6 Transformations of Cartesian coordinates
- 1.1.7 Hölder-continuous and Lipschitz functions
- 1.1.8 The symbols “o” and “O”
- 1.1.9 Partitions of unity
- 1.1.10 Measure
- 1.1.11 Description of the boundary
- 1.1.12 Measure on the boundary of a domain
- 1.1.13 Classical Green’s theorem
- 1.1.14 Lebesgue spaces
- 1.1.15 Lebesgue’s points
- 1.1.16 Absolutely continuous functions
- 1.1.17 Absolute continuity of integrals with respect to measurable subsets
- 1.1.18 Some theorems from integration theory

1.2 Governing equations and relations of gas dynamics

- 1.2.1 Description of the flow
- 1.2.2 The transport theorem
- 1.2.3 The continuity equation
- 1.2.4 The equations of motion
- 1.2.5 The law of conservation of the moment of momentum. Symmetry of the stress tensor
- 1.2.6 Inviscid and viscous fluids
- 1.2.7 The energy equation
- 1.2.8 The second law of thermodynamics and the entropy
- 1.2.9 Principle of material frame indifference
- 1.2.10 Newtonian fluids
- 1.2.11 Conservative and dissipation form of the energy equation for Newtonian fluids
- 1.2.12 Entropy form of the energy equation for Newtonian fluids
CONTENTS

1.2.13 Some consequences of the Clausius-Duhem inequality 25
1.2.14 Equations of state 26
1.2.15 Adiabatic flow of a perfect inviscid gas 27
1.2.16 Compressible Euler equations 28
1.2.17 Compressible Navier–Stokes equations for a perfect viscous gas 28
1.2.18 Barotropic flow of a viscous gas 29
1.2.19 Speed of sound 30
1.2.20 Simplified models 30
1.2.21 Initial and boundary conditions 31

1.3 Some advanced mathematical concepts and results 32
1.3.1 Spaces of Hölder-continuous and continuously differentiable functions 33
1.3.2 Young's functions, Jensen's inequality 33
1.3.3 Orlicz spaces 34
1.3.4 Distributions 35
1.3.5 Sobolev spaces 40
1.3.6 Homogeneous Sobolev spaces 47
1.3.7 Tempered distributions 50
1.3.8 Radon measure and representation of $C_b(\Omega)^*$ 52
1.3.9 Functions of bounded variation 52
1.3.10 Functions with values in Banach spaces 53
1.3.11 Sobolev imbeddings of abstract spaces 57
1.3.12 Some compactness results 58

1.4 Survey of concepts and results from functional analysis 60
1.4.1 Linear vector spaces 60
1.4.2 Topological linear spaces 60
1.4.3 Metric linear space 62
1.4.4 Normed linear space 62
1.4.5 Duals to Banach spaces and weak(-*) topologies 64
1.4.6 Riesz representation theorem 68
1.4.7 Operators 68
1.4.8 Elements of spectral theory 70
1.4.9 Lax–Milgram lemma 70
1.4.10 Imbeddings 71
1.4.11 Solution of nonlinear operator equations 71

2 Theoretical results for the Euler equations 74
2.1 Hyperbolic systems and the Euler equations 74
2.1.1 Zero-viscosity Burgers equation 75
2.1.2 One-dimensional Euler equations 76
2.1.3 Lagrangian mass coordinates 76
2.1.4 Symmetrizable systems 77
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1.5</td>
<td>Matrix form of the p-system</td>
<td>77</td>
</tr>
<tr>
<td>2.1.6</td>
<td>The Euler equations of an inviscid gas</td>
<td>78</td>
</tr>
<tr>
<td>2.2</td>
<td>Existence of smooth solutions</td>
<td>79</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Hyperbolic systems and characteristics</td>
<td>79</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Cauchy problem for system of conservation laws</td>
<td>80</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Linear scalar equation</td>
<td>81</td>
</tr>
<tr>
<td>2.2.4</td>
<td>Solution of a linear system</td>
<td>82</td>
</tr>
<tr>
<td>2.2.5</td>
<td>Nonlinear scalar equation</td>
<td>82</td>
</tr>
<tr>
<td>2.2.6</td>
<td>Piston problem</td>
<td>84</td>
</tr>
<tr>
<td>2.2.7</td>
<td>Complementary Riemann invariants</td>
<td>84</td>
</tr>
<tr>
<td>2.2.8</td>
<td>Solution of the piston problem</td>
<td>85</td>
</tr>
<tr>
<td>2.2.9</td>
<td>Cauchy problem for a symmetric hyperbolic system</td>
<td>89</td>
</tr>
<tr>
<td>2.2.10</td>
<td>Approximations</td>
<td>90</td>
</tr>
<tr>
<td>2.2.11</td>
<td>Existence of approximations</td>
<td>90</td>
</tr>
<tr>
<td>2.2.12</td>
<td>Energy estimate</td>
<td>91</td>
</tr>
<tr>
<td>2.2.13</td>
<td>Convergence of approximations to a generalized solution</td>
<td>92</td>
</tr>
<tr>
<td>2.2.14</td>
<td>Regularity of the generalized solution</td>
<td>92</td>
</tr>
<tr>
<td>2.2.15</td>
<td>Quasilinear system</td>
<td>94</td>
</tr>
<tr>
<td>2.2.16</td>
<td>Local existence for a quasilinear system</td>
<td>95</td>
</tr>
<tr>
<td>2.2.17</td>
<td>Second grade approximations</td>
<td>95</td>
</tr>
<tr>
<td>2.2.18</td>
<td>Higher order energy estimates</td>
<td>95</td>
</tr>
<tr>
<td>2.2.19</td>
<td>Convergence of approximations</td>
<td>97</td>
</tr>
<tr>
<td>2.2.20</td>
<td>Uniqueness</td>
<td>98</td>
</tr>
<tr>
<td>2.2.21</td>
<td>Local existence for equations of an isentropic ideal gas</td>
<td>99</td>
</tr>
<tr>
<td>2.2.22</td>
<td>Existence of global smooth solutions for nonlinear hyperbolic systems</td>
<td>100</td>
</tr>
<tr>
<td>2.2.23</td>
<td>2×2 system of conservation laws, Riemann invariants</td>
<td>100</td>
</tr>
<tr>
<td>2.2.24</td>
<td>Plane wave solutions</td>
<td>103</td>
</tr>
<tr>
<td>2.2.25</td>
<td>Plane waves for the Euler system in $2D$</td>
<td>104</td>
</tr>
<tr>
<td>2.3</td>
<td>Weak solutions</td>
<td>106</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Blow up of classical solutions</td>
<td>107</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Generalized formulation for systems of conservation laws</td>
<td>108</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Piecewise smooth solutions</td>
<td>108</td>
</tr>
<tr>
<td>2.3.4</td>
<td>Entropy condition</td>
<td>110</td>
</tr>
<tr>
<td>2.3.5</td>
<td>Physical entropy</td>
<td>112</td>
</tr>
<tr>
<td>2.3.6</td>
<td>General parabolic approximation and the entropy condition</td>
<td>113</td>
</tr>
<tr>
<td>2.3.7</td>
<td>Entropy for a general scalar conservation law</td>
<td>115</td>
</tr>
<tr>
<td>Section</td>
<td>Topic</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>2.3.8</td>
<td>Entropy for a 2×2 system of conservation laws in $1D$</td>
<td>117</td>
</tr>
<tr>
<td>2.3.9</td>
<td>Entropy function for a p-system</td>
<td>118</td>
</tr>
<tr>
<td>2.3.10</td>
<td>Riemann problem</td>
<td>118</td>
</tr>
<tr>
<td>2.3.11</td>
<td>Riemann problem for 2×2 isentropic gas dynamics equations</td>
<td>120</td>
</tr>
<tr>
<td>2.3.12</td>
<td>Existence and uniqueness of admissible weak solution for a scalar conservation law</td>
<td>125</td>
</tr>
<tr>
<td>2.3.13</td>
<td>Plane waves admitting discontinuities</td>
<td>125</td>
</tr>
<tr>
<td>2.3.14</td>
<td>Existence of solutions to the 2×2 Euler system for an isentropic gas</td>
<td>125</td>
</tr>
<tr>
<td>2.3.15</td>
<td>Lax–Friedrichs difference approximations</td>
<td>128</td>
</tr>
<tr>
<td>2.3.16</td>
<td>Existence of approximations</td>
<td>129</td>
</tr>
<tr>
<td>2.3.17</td>
<td>Invariant regions for Riemann invariants</td>
<td>129</td>
</tr>
<tr>
<td>2.3.18</td>
<td>Compactness argument</td>
<td>130</td>
</tr>
<tr>
<td>2.3.19</td>
<td>Characterization of the weak limit by Young measure</td>
<td>132</td>
</tr>
<tr>
<td>2.3.20</td>
<td>Div–curl lemma and Tartar’s commutation relation</td>
<td>134</td>
</tr>
<tr>
<td>2.3.21</td>
<td>Existence of weak entropy–entropy flux pairs</td>
<td>135</td>
</tr>
<tr>
<td>2.3.22</td>
<td>Localization of supp ν</td>
<td>138</td>
</tr>
<tr>
<td>2.3.23</td>
<td>Approximative limit is an admissible solution</td>
<td>144</td>
</tr>
<tr>
<td>2.3.24</td>
<td>Global existence limit is an admissible solution for general systems in one dimension</td>
<td>145</td>
</tr>
<tr>
<td>2.4</td>
<td>Final comments</td>
<td>146</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Local existence results</td>
<td>146</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Global smooth solutions</td>
<td>147</td>
</tr>
<tr>
<td>2.4.3</td>
<td>Blow up and the lifespan of smooth solution</td>
<td>148</td>
</tr>
<tr>
<td>2.4.4</td>
<td>Global weak solutions for multidimensional Euler equations</td>
<td>150</td>
</tr>
<tr>
<td>2.4.5</td>
<td>Riemann problem</td>
<td>151</td>
</tr>
<tr>
<td>2.4.6</td>
<td>Euler equations with source terms</td>
<td>152</td>
</tr>
<tr>
<td>2.4.7</td>
<td>Comments on the 2×2 Euler system for an isentropic fluid</td>
<td>152</td>
</tr>
<tr>
<td>2.4.8</td>
<td>Euler equations for a nonisentropic fluid</td>
<td>154</td>
</tr>
<tr>
<td>3</td>
<td>Some mathematical tools for compressible flows</td>
<td>155</td>
</tr>
<tr>
<td>3.1</td>
<td>Renormalized solutions of the steady continuity equation</td>
<td>155</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Friedrichs’ lemma about commutators</td>
<td>155</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Continuity equation and its prolongation</td>
<td>158</td>
</tr>
<tr>
<td>3.1.3</td>
<td>Renormalized solutions of the continuity equation</td>
<td>159</td>
</tr>
<tr>
<td>3.2</td>
<td>Vector fields with summable divergence</td>
<td>163</td>
</tr>
</tbody>
</table>
CONTENTS

3.3 The equation $\text{div } v = f$
 3.3.1 Bounded domains 166
 3.3.2 Exterior domains 176
 3.3.3 Domains with noncompact boundaries 178
3.4 Some results for monotone and convex operators 183
 3.4.1 Some results from convex analysis 183
 3.4.2 Some results from monotone operators 186

4 Weak solutions for steady Navier–Stokes equations of compressible barotropic flow 189
 4.1 Formulation of problems in bounded and exterior domains and main results 189
 4.1.1 Definition of weak solutions 190
 4.1.2 Existence of weak solutions 192
 4.1.3 Exterior domains 193
 4.2 Heuristic approach 194
 4.2.1 Estimates due to the energy inequality and improved estimates of density 194
 4.2.2 Limit passage 195
 4.2.3 Effective viscous flux 196
 4.2.4 Strong convergence of density – Lions’ approach 197
 4.2.5 Strong convergence of density – Feireisl’s approach 198
 4.2.6 Remarks to approximations 199
 4.3 Approximations in bounded domains 200
 4.3.1 First level approximation – artificial pressure 200
 4.3.2 Second level approximation – relaxation in the continuity equation 202
 4.3.3 Third level approximation – relaxed continuity equation with dissipation 203
 4.4 Effective viscous flux 204
 4.4.1 Riesz operators 205
 4.4.2 Div–curl lemma 206
 4.4.3 Commutator lemma 207
 4.4.4 Effective viscous flux 208
 4.5 Neumann problem for the Laplacian 211
 4.5.1 Existence, uniqueness and regularity 211
 4.5.2 Eigenvalue problem 212
 4.6 Relaxed continuity equation with dissipation 212
 4.6.1 Statement of the problem and results 212
 4.6.2 Estimates for the Leray–Schauder fixed points 213
 4.6.3 Homotopy of compact transformations 215
 4.6.4 Nonnegativity of the density 216
 4.7 The Lamé system 216
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.7.1</td>
<td>Existence, uniqueness and regularity</td>
<td>217</td>
</tr>
<tr>
<td>4.7.2</td>
<td>Eigenvalue problem</td>
<td>217</td>
</tr>
<tr>
<td>4.8</td>
<td>Complete system with dissipation in the relaxed continuity equation and with artificial pressure</td>
<td>218</td>
</tr>
<tr>
<td>4.8.1</td>
<td>Existence of solutions</td>
<td>218</td>
</tr>
<tr>
<td>4.8.2</td>
<td>Estimates independent of dissipation</td>
<td>222</td>
</tr>
<tr>
<td>4.9</td>
<td>Complete system with relaxed continuity equation and with artificial pressure</td>
<td>223</td>
</tr>
<tr>
<td>4.9.1</td>
<td>Vanishing dissipation limit</td>
<td>224</td>
</tr>
<tr>
<td>4.9.2</td>
<td>Effective viscous flux</td>
<td>225</td>
</tr>
<tr>
<td>4.9.3</td>
<td>Renormalized continuity equation with powers</td>
<td>226</td>
</tr>
<tr>
<td>4.9.4</td>
<td>Strong convergence of the density</td>
<td>230</td>
</tr>
<tr>
<td>4.9.5</td>
<td>Equation of momentum, energy inequality and estimates independent of the relaxation parameter</td>
<td>231</td>
</tr>
<tr>
<td>4.10</td>
<td>Complete system with artificial pressure</td>
<td>231</td>
</tr>
<tr>
<td>4.10.1</td>
<td>Vanishing relaxation limit</td>
<td>232</td>
</tr>
<tr>
<td>4.10.2</td>
<td>Effective viscous flux</td>
<td>233</td>
</tr>
<tr>
<td>4.10.3</td>
<td>Renormalized continuity equation with powers</td>
<td>234</td>
</tr>
<tr>
<td>4.10.4</td>
<td>Strong convergence of the density</td>
<td>235</td>
</tr>
<tr>
<td>4.10.5</td>
<td>Momentum equation</td>
<td>236</td>
</tr>
<tr>
<td>4.10.6</td>
<td>Energy inequality and estimates independent of artificial pressure</td>
<td>236</td>
</tr>
<tr>
<td>4.11</td>
<td>Complete system of a viscous barotropic gas</td>
<td>239</td>
</tr>
<tr>
<td>4.11.1</td>
<td>Vanishing artificial pressure limit</td>
<td>239</td>
</tr>
<tr>
<td>4.11.2</td>
<td>Effective viscous flux</td>
<td>241</td>
</tr>
<tr>
<td>4.11.3</td>
<td>Boundedness of oscillations of density sequence</td>
<td>241</td>
</tr>
<tr>
<td>4.11.4</td>
<td>Renormalized continuity equation</td>
<td>243</td>
</tr>
<tr>
<td>4.11.5</td>
<td>Strong convergence of the density</td>
<td>244</td>
</tr>
<tr>
<td>4.12</td>
<td>Approximations in an exterior domain</td>
<td>245</td>
</tr>
<tr>
<td>4.12.1</td>
<td>Relaxation on invading domains</td>
<td>245</td>
</tr>
<tr>
<td>4.13</td>
<td>Complete system with relaxed continuity equation on an exterior domain</td>
<td>247</td>
</tr>
<tr>
<td>4.13.1</td>
<td>Some equivalence inequalities</td>
<td>247</td>
</tr>
<tr>
<td>4.13.2</td>
<td>Bounds due to the energy inequality</td>
<td>247</td>
</tr>
<tr>
<td>4.13.3</td>
<td>Estimates independent of invading domains and relaxation</td>
<td>248</td>
</tr>
<tr>
<td>4.14</td>
<td>Existence of weak solutions in exterior domains</td>
<td>254</td>
</tr>
<tr>
<td>4.14.1</td>
<td>Vanishing relaxation limit</td>
<td>254</td>
</tr>
<tr>
<td>4.14.2</td>
<td>Effective viscous flux and renormalized continuity equation</td>
<td>255</td>
</tr>
<tr>
<td>4.15</td>
<td>Existence of weak solutions in bounded and in exterior Lipschitz domains</td>
<td>259</td>
</tr>
</tbody>
</table>
CONTENTS xvii

4.16 Existence of weak solutions in domains with noncompact boundaries
4.16.1 Formulation of the problem, fluxes 261
4.16.2 Main results 264
4.16.3 Domains with conical or superconical exits 265
4.16.4 Domains with cylindrical or subconical exits 268

4.17 Further results, comments and bibliographic remarks 268
4.17.1 Weak compactness 268
4.17.2 Bounded domains 269
4.17.3 Exterior domains 274
4.17.4 Domains with noncompact boundaries 275
4.17.5 Flow of mixtures 278

5 Strong solutions for steady Navier—Stokes equations of compressible barotropic flow and small data 279
5.1 Notation and main results 279
5.1.1 Formulation of the problem 279
5.1.2 Existence theorem in a bounded domain 280
5.1.3 Functional spaces for exterior domains 280
5.1.4 Existence theorems in exterior domains 281

5.2 Heuristic approach 282
5.2.1 Perturbations and linearization of the problem 282
5.2.2 Helmholtz decomposition and effective viscous flux 283
5.2.3 Existence theorem for the linearized system 285

5.3 Auxiliary linear problems 285
5.3.1 Neumann problem for the Laplacian 286
5.3.2 Helmholtz decomposition 286
5.3.3 Dirichlet problem for the Laplacian 287
5.3.4 Stokes and Oseen problems 287
5.3.5 Steady transport equation 289

5.4 The linearized system 290
5.5 The fully nonlinear system 292
5.5.1 The case of zero velocity at infinity 292
5.5.2 The case of nonzero velocity at infinity 295

5.6 Bibliographic remarks 296
5.6.1 Bounded domains 296
5.6.2 Exterior domains 297

6 Some mathematical tools for nonsteady equations 300
6.1 Some auxiliary results from functional analysis 300
6.1.1 Continuous functions with values in L^q_{weak} 300
6.1.2 The time and space mollifiers 303
6.1.3 Local weak compactness in unbounded domains 304
6.2 Renormalized solutions of the continuity equation 304
6.2.1 Friedrichs' lemma about commutators 304
6.2.2 Continuity equation and its prolongation 306
6.2.3 Renormalized continuity equation 307
6.2.4 Strong continuity of the density 310

7 Weak solutions for nonsteady Navier–Stokes equations of compressible barotropic flow 312
 7.1 Formulation of problems and main results 312
 7.1.1 Definition of weak solutions 313
 7.1.2 Existence in bounded domains 318
 7.1.3 Existence in exterior domains 320
 7.2 Linear momentum and total energy 321
 7.2.1 Linear momentum 321
 7.2.2 Total energy 322
 7.3 Heuristic approach 324
 7.3.1 Compactness of weak solutions 324
 7.3.2 Estimates due to the energy inequality 325
 7.3.3 Improved estimate of the density 325
 7.3.4 Limit passage 326
 7.3.5 Effective viscous flux 326
 7.3.6 Strong convergence of density – Lions’ approach 327
 7.3.7 Strong convergence of density – Feireisl’s approach 328
 7.3.8 Remarks on approximations 329
 7.4 Approximations in bounded domains 330
 7.4.1 First level approximations – artificial pressure 330
 7.4.2 Second level approximation – continuity equation with dissipation 333
 7.4.3 Third level approximation – Galerkin method 335
 7.5 Effective viscous flux 338
 7.6 Continuity equation with dissipation 343
 7.6.1 Regularity for the parabolic Neumann problem 343
 7.6.2 Continuity equation with dissipation 345
 7.6.3 Construction of a solution – Galerkin method 346
 7.6.4 Regularity of solutions 348
 7.6.5 Boundedness from below and from above 348
 7.6.6 L^2-estimates 349
 7.6.7 L^2-estimate of differences 350
 7.6.8 A renormalized inequality with dissipation 351
 7.7 Galerkin approximation of the system with dissipation in the continuity equation and with artificial pressure 352
 7.7.1 Preparatory calculations 352
 7.7.2 Galerkin approximation 353
7.7.3 Local existence of solutions 354
7.7.4 Existence of maximal solutions 357
7.7.5 Energy inequalities and estimates 360

7.8 Complete system with dissipation in the continuity equation and with artificial pressure 361
7.8.1 Limit in the modified continuity equation 362
7.8.2 Limit in the momentum equation 363
7.8.3 Limit in the energy inequality and estimates independent of vanishing dissipation 365
7.8.4 Improved estimate of density 366

7.9 Complete system with artificial pressure 368
7.9.1 Weak limits as dissipation tends to zero 369
7.9.2 Effective viscous flux 372
7.9.3 Renormalized equation of continuity and strong convergence of density 374
7.9.4 Energy inequality and estimates independent of artificial pressure 376
7.9.5 Improved estimate of density 376

7.10 Complete system of isentropic Navier–Stokes equations 381
7.10.1 Weak limits at vanishing artificial pressure 382
7.10.2 Effective viscous flux 386
7.10.3 Amplitude of oscillations 386
7.10.4 Renormalized continuity equation 388
7.10.5 Strong convergence of the density 390
7.10.6 Energy inequalities 392
7.10.7 General initial conditions 392

7.11 Existence of solutions in exterior domains 393
7.11.1 Solutions on invading domains 393
7.11.2 Orlicz spaces $L^p_q(\Omega)$ 395
7.11.3 Estimates independent of invading domains 396
7.11.4 Improved estimates of density 397
7.11.5 Weak limits at growing invading domains 398
7.11.6 Effective viscous flux and renormalized continuity equation 400
7.11.7 Strong convergence of the density 401
7.11.8 Energy inequality 404

7.12 Other problems and bibliographic remarks 404
7.12.1 Bibliographic remarks on basic theorems 404
7.12.2 Slip boundary conditions 408
7.12.3 Nonmonotone pressure 409
7.12.4 Domain dependence 410
7.12.5 Nonhomogeneous boundary conditions 412
7.12.6 Unbounded domains and non-zero velocity at infinity 424
8 Global behavior of weak solutions

8.1 Formulation of the problem
8.2 Basic assumptions
8.3 Sequential stabilization of the weak solution
8.4 Auxiliary functions
8.5 Existence and estimates of auxiliary functions
8.6 Comparison density and a test function
8.7 Passing to the limit with the regularization parameter
8.8 Comparison density is close to the density as $t \to \infty$.
8.9 Convergence of the density
8.10 Uniqueness of equilibrium
8.11 Global behavior of weak solutions in time in bounded domains – arbitrary forces
8.12 Bounded absorbing sets
8.13 Asymptotically closed trajectories
8.14 Global attractor of short trajectories
8.15 Rapidly oscillating external forces
8.16 Attractors
8.17 Time-periodic solutions
8.18 Uniqueness of equilibrium revisited

9 Strong solutions of nonsteady compressible Navier–Stokes equations

9.1 Problem formulation
9.2 Similarity transformation
9.3 Maximal parabolic regularity
9.4 Resolution of the continuity equation with a given velocity
9.5 Further transcription of the problem
9.6 Fixed point argument and the existence of a local solution
9.7 Uniqueness
9.8 Global a priori estimate
9.9 Global existence
9.10 Bibliographical remarks