Lectures on

FINITE FIELDS and GALOIS RINGS

Zhe-Xian Wan
Chinese Academy of Sciences, China
Contents

1 Sets and Integers .. 1
 1.1 Sets and Maps .. 1
 1.2 The Factorization of Integers 7
 1.3 Equivalence Relation and Partition 15
 1.4 Exercises ... 18

2 Groups ... 21
 2.1 The Concept of a Group and Examples 21
 2.2 Subgroups and Cosets 31
 2.3 Cyclic Groups .. 38
 2.4 Exercises ... 45

3 Fields and Rings .. 49
 3.1 Fields ... 49
 3.2 The Characteristic of a Field 58
 3.3 Rings and Integral Domains 64
 3.4 Field of Fractions of an Integral Domain 67
 3.5 Divisibility in a Ring 70
 3.6 Exercises ... 72

4 Polynomials ... 75
 4.1 Polynomial Rings ... 75
 4.2 Division Algorithm 80
4.3 Euclidean Algorithm .. 83
4.4 Unique Factorization of Polynomials 93
4.5 Exercises ... 99

5 Residue Class Rings ... 101
5.1 Residue Class Rings .. 101
5.2 Examples ... 106
5.3 Residue Class Fields ... 108
5.4 More Examples ... 111
5.5 Exercises ... 114

6 Structure of Finite Fields 115
6.1 The Multiplicative Group of a Finite Field 115
6.2 The Number of Elements in a Finite Field 120
6.3 Existence of Finite Field with p^n Elements 122
6.4 Uniqueness of Finite Field with p^n Elements 127
6.5 Subfields of Finite Fields 128
6.6 A Distinction between Finite Fields of Characteristic 2 and Not 2 ... 130
6.7 Exercises ... 133

7 Further Properties of Finite Fields 137
7.1 Automorphisms .. 137
7.2 Characteristic Polynomials and Minimal Polynomials 140
7.3 Primitive Polynomials 145
7.4 Trace and Norm ... 148
7.5 Quadratic Equations .. 155
7.6 Exercises ... 158

8 Bases .. 161
8.1 Bases and Polynomial Bases 161
8.2 Dual Bases .. 166
CONTENTS

<table>
<thead>
<tr>
<th>8.3</th>
<th>Self-dual Basis</th>
<th>173</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.4</td>
<td>Normal Bases</td>
<td>180</td>
</tr>
<tr>
<td>8.5</td>
<td>Exercises</td>
<td>189</td>
</tr>
</tbody>
</table>

9 Factoring Polynomials over Finite Fields | 191

9.1 Factoring Polynomials over Finite Fields | 191
9.2 Factorization of $x^n - 1$ | 202
9.3 Cyclotomic Polynomials | 206
9.4 The Period of a Polynomial | 210
9.5 Exercises | 216

10 Irreducible Polynomials over Finite Fields | 219

10.1 On the Determination of Irreducible Polynomials | 219
10.2 Irreducibility Criterion of Binomials | 221
10.3 Some Irreducible Trinomials | 225
10.4 Compositions of Polynomials | 231
10.5 Recursive Constructions | 237
10.6 Composed Product and Sum of Polynomials | 241
10.7 Irreducible Polynomials of Any Degree | 244
10.8 Exercises | 246

11 Quadratic Forms over Finite Fields | 249

11.1 Quadratic Forms over Finite Fields of Characteristic Not 2 | 249
11.2 Alternate Forms over Finite Fields | 255
11.3 Quadratic Forms over Finite Fields of Characteristic 2 | 258
11.4 Exercises | 268

12 More Group Theory and Ring Theory | 271

12.1 Homomorphisms of Groups, Normal Subgroups and Factor Groups | 271
12.2 Direct Product Decomposition of Groups | 279
12.3 Some Ring Theory | 284
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.4</td>
<td>Modules</td>
<td>292</td>
</tr>
<tr>
<td>12.5</td>
<td>Exercises</td>
<td>295</td>
</tr>
<tr>
<td>13</td>
<td>Hensel's Lemma and Hensel Lift</td>
<td>297</td>
</tr>
<tr>
<td>13.1</td>
<td>The Polynomial Ring $\mathbb{Z}_p[x]$</td>
<td>297</td>
</tr>
<tr>
<td>13.2</td>
<td>Hensel's Lemma</td>
<td>300</td>
</tr>
<tr>
<td>13.3</td>
<td>Factorization of Monic Polynomials in $\mathbb{Z}_p[x]$</td>
<td>302</td>
</tr>
<tr>
<td>13.4</td>
<td>Basic Irreducible Polynomials and Hensel Lift</td>
<td>304</td>
</tr>
<tr>
<td>13.5</td>
<td>Exercises</td>
<td>308</td>
</tr>
<tr>
<td>14</td>
<td>Galois Rings</td>
<td>309</td>
</tr>
<tr>
<td>14.1</td>
<td>Examples of Galois Rings</td>
<td>309</td>
</tr>
<tr>
<td>14.2</td>
<td>Structure of Galois Rings</td>
<td>313</td>
</tr>
<tr>
<td>14.3</td>
<td>The p-adic Representation</td>
<td>316</td>
</tr>
<tr>
<td>14.4</td>
<td>The Group of Units of a Galois Ring</td>
<td>319</td>
</tr>
<tr>
<td>14.5</td>
<td>Extension of Galois Rings</td>
<td>323</td>
</tr>
<tr>
<td>14.6</td>
<td>Automorphisms of Galois Rings</td>
<td>327</td>
</tr>
<tr>
<td>14.7</td>
<td>Generalized Trace and Norm</td>
<td>331</td>
</tr>
<tr>
<td>14.8</td>
<td>Exercises</td>
<td>332</td>
</tr>
<tr>
<td></td>
<td>Bibliography</td>
<td>335</td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td>339</td>
</tr>
</tbody>
</table>