Science Teaching and Development of Thinking

Anton E Lawson
Arizona State University
CONTENTS

PREFACE xvii

CHAPTER 1 TEACHING AND THE NATURE OF SCIENCE 1
Educational Purpose 1
The Nature of Scientific Thinking: A Look at the
Work of an Ethologist 5
 Creating Hypotheses 6
 Testing Hypotheses 8
 Why Hypotheses Are Neither Proven nor Disproven 11
The Origin and Nature of Theories: A Look at the
Work of Charles Darwin 13
 The Use of Analogy 16
 The Nature of Theories 17
How Are Theories Tested? The Case of
Spontaneous Generation 23
Science and Religion 27
The Role of Observation in Science: The “Construction”
of Oxygen 28
CHAPTER 2 PATTERNS OF THINKING BY SCIENTISTS AND BY ADOLESCENTS

Homing Behavior in Silver Salmon 43
 Raising a Causal Question 43
 Creating Hypotheses and Combinatorial Thinking 44
 Generating Predictions 45
 Identifying and Controlling Variables 45
 Drawing Conclusions 46
 Probabilistic and Correlational Thinking 46

Creative and Critical Thinking Skills 49

The Nature of Adolescent Thinking 53
 The Mealworm Puzzle 53
 The Volume Puzzle 55
 The Frog Puzzle 58

Empirical-Inductive and Hypothetical-Deductive Thinking Patterns 60
 Empirical-Inductive Thinking Patterns 60
 Hypothetical-Deductive Thinking Patterns 61
 Analysis of Student Responses 62

Summary 65

CHAPTER 3 SCIENTIFIC KNOWLEDGE: ITS CONSTRUCTION AND DEVELOPMENT

The Nature of Declarative Knowledge 69

Types of Concepts 70

Types of Conceptual Systems 73

Mental Structures and the Process of Self-Regulation 74
 The Pattern of Knowledge Construction 75
 The Role of Mental Structures 76
 Additional Examples of Self-Regulation 78
 Disrupting Children's Spontaneous Attempts at Self-Regulation 82
 Three Basic Mental Abilities and Self-Regulation 83
 How Do Thinking Patterns Function in Adult Thinking? 83
 Contributing Factors in Self-Regulation 85

How Are Descriptive Concepts Constructed? 88
The Origins of Inquiry-Oriented Instruction 155
Origins in the SCIS Program 158
Origins in Biology Education 160
Changes in Names: The Phases of the Learning Cycle 161

The Learning Cycle in the BSCS Program 162
The Learning Cycle in Driver's Conceptual Change Model 162

Key Postulates 162
Selecting Appropriate Explorations 169
 General Science 169
 Biology 171
 Chemistry 173
 Physics 175

CHAPTER 6

CHARACTERISTICS OF EFFECTIVE SCIENCE INSTRUCTION 177

Lesson Characteristics 178
Characteristics of Student Behavior 180
Characteristics of Teacher Behavior 181
Characteristics of Effective Questioning 182
Example Lessons 184

Keeping Inquiry Going and “Covering” Content 200
 Helping Students Create Hypotheses 201
 Correcting “Wrong” Conclusions 202
 Classroom Control, Motivation, and Seating Arrangements 203
 Covering Content 204
 Scheduling Learning Cycles 204

CHAPTER 7

WHY DON'T MORE TEACHERS USE INQUIRY-ORIENTED METHODS? 209

Resistance to Inquiry 211
 Time and Energy 211
 Too Slow 213
 Reading Too Difficult 214
 Risk Too High 218
 Tracking 219
 Student Immaturity 220
CONTENTS

Teaching Habits 221
Sequential Text 221
Discomfort for Teachers and Students 222
Too Expensive 223

Conclusion 224

CHAPTER 8 PRINCIPLES OF CURRICULUM DEVELOPMENT AND IMPLEMENTATION 226

Curriculum Principles: Concept Organization and Presentation 227
The Undifferentiated Whole 228

Examples of Teaching Conceptual Systems 233
The Ecosystem 233
Evolution and Natural Selection 238

Curricular Principles for the Development of Thinking Skills 247
Self-Regulation 247
Independent Investigations 248
Historical Model 249
Comparing Conceptual Systems 249

Textbook Use and Selection 250
Using Field Trips to Provoke Self-Regulation 254
An Example of Student Field Work 256
Comments and Questions About Student Work 260

CHAPTER 9 STUDENT ASSESSMENT 261

Classifying Test Items 262
Biology 262
Geology 264
Chemistry 266
Physics 268

Empirical-Inductive and Hypothetical-Deductive Test Items 270
Using Test Items to Encourage Self-Regulation 272
Using Homework Problems to Encourage Self-Regulation 274
What Is Wrong with Typical Homework Problems? 275
How to Encourage Self-Regulation 276
Examples of Physical Science Homework Problems 278
Examples of Biological Science Homework Problems 283

Written Work 287
Lab Report Guidelines 288
The One-Page Lab Report 289
Science Fair Projects 290
Portfolio Assessment 295

CHAPTER 10 DIRECTIONS FOR FUTURE RESEARCH AND DEVELOPMENT 300
Conceptions and Misconceptions 301
Motivation and Assessment 303
Cooperative Learning 303
Sequencing and Selecting Content 304
The Role of Analogy 306
Retention and Transfer of Thinking Skills 307
Teaching Content Versus Process 308
Textbooks 309
New Technologies 310
Teacher Education and Professional Growth 310
Other Currently Popular Methods 312
Project 2061 313
Integrating Social and Technological Issues 314
Testing 316
Theoretical Issues and a Problem with "Social" Constructivism 317
Conclusion 319

CHAPTER 11 NEUROLOGICAL MODELS OF SELF-REGULATION AND INSTRUCTIONAL METHODS 323
Basic Neurological Principles 324
General Brain Anatomy 324
Neuronal Signals 326
General Principles of Network Modeling 327
Equations of Variable Interactions 328
Learning in a Simple Circuit: Classical Conditioning 330
Learning in Humans: A More Complex Network 331
The Basic Pattern of Knowledge Construction 331
CONTENTS XIII
The Neural Network 333
The Rebound from Hunger to Satisfaction 334
Stopping Feeding Behavior Resulting from Frustration 334
Match and Mismatch of Input with Expectations:
 Adaptive Resonance 335
Extension of Network Characteristics to Higher
 Levels of Learning 338
 Initiating and Terminating Problem-Solving Behavior 340
 Terminating the Additive Strategy Because
 of Contradiction 341
 Orienting Arousal and the Search for a New Strategy 342
 Feedback and Internal Monitoring of Problem Solving 343
Instructional Implications 344
Self-Regulation, Constructivism, and the Learning Paradox 346
 Emergent Properties in the Natural Sciences 347
 Emergent Properties in Cognition 348
 A Return to Classical Conditioning 349

CHAPTER 12 THE ROLE OF LOGICAL AND ANALOGICAL
THINKING IN KNOWLEDGE
CONSTRUCTION 351
Role of Logic 352
 Two Common Forms of Logic 353
 The Multiple-Hypothesis Theory of Hypothetical-
 Deductive Thought: Key Elements 361
 Testing the Alternatives 362
 Conclusions and Recommendations 365
A Neurological Explanation of Memory and Analogical Thinking 367
 Adaptive Resonance 369
 Outstars and Instars: Fundamental Units 370
 The Neural Basis for Analogy 374
 An Emergent, Self-Organizing Control System 376
 A Return to the Japanese Classroom 380
 Summary 381
Integrating Philosophy, Neural Modeling, Scientific
 Insight, and Instruction 382
APPENDIX A THE CENTRAL PURPOSE OF AMERICAN EDUCATION 387
Educational Policies Commission

APPENDIX B THE METHOD OF MULTIPLE WORKING HYPOTHESES 398
T. C. Chamberlain

APPENDIX C WHAT IS SCIENCE? 408
R. P. Feynmen

APPENDIX D RESEARCH ON THE LEARNING CYCLE 418
A. E. Lawson, M. R. Abraham, and J. W. Renner

APPENDIX E TEACHING AND THE EXPANDING KNOWLEDGE 432
A. Szent-Gyorgyi

APPENDIX F CLASSROOM TEST OF SCIENTIFIC REASONING 436

APPENDIX G LEARNING CYCLES 446
Learning Cycle 1: Is Water a “Pure” Substance? 447
Learning Cycle 2: What Happens When Food Coloring and Detergent Are Put in Milk? 460
Learning Cycle 3: How Were Alien Monoliths Sorted? 471
Learning Cycle 5: What Causes Molecules to Move? 492
Learning Cycle 6: How Does Cell Structure Relate to Function? 503
Learning Cycle 7: How Do Multicellular Organisms Grow? 520
Learning Cycle 8: What Happens to Molecules During Chemical Breakdown? 531
Learning Cycle 10: Why Do Liquids Evaporate at Different Rates? 544

Learning Cycle 11: What Changes Have Occurred in Organisms Through Time? 556

REFERENCES 573

INDEX 589