Contents

Introduction xi

Chapter 1. The Real Line 1
 §1.1. Why do we bother? 1
 §1.2. Limits 3
 §1.3. Continuity 7
 §1.4. The fundamental axiom 9
 §1.5. The axiom of Archimedes 10
 §1.6. Lion hunting 15
 §1.7. The mean value inequality 18
 §1.8. Full circle 21
 §1.9. Are the real numbers unique? 22

Chapter 2. A First Philosophical Interlude 25
 §2.1. Is the intermediate value theorem obvious? 25

Chapter 3. Other Versions of the Fundamental Axiom 31
 §3.1. The supremum 31
 §3.2. The Bolzano–Weierstrass theorem 37
 §3.3. Some general remarks 42
Chapter 4. Higher Dimensions 43
§4.1. Bolzano–Weierstrass in Higher Dimensions 43
§4.2. Open and closed sets 48
§4.3. A central theorem of analysis 56
§4.4. The mean value theorem 59
§4.5. Uniform continuity 64
§4.6. The general principle of convergence 66

Chapter 5. Sums and Suchlike 73
§5.1. Comparison tests 73
§5.2. Conditional convergence 75
§5.3. Interchanging limits 80
§5.4. The exponential function 88
§5.5. The trigonometric functions 95
§5.6. The logarithm 99
§5.7. Powers 105
§5.8. The fundamental theorem of algebra 109

Chapter 6. Differentiation 117
§6.1. Preliminaries 117
§6.2. The operator norm and the chain rule 123
§6.3. The mean value inequality in higher dimensions 130

Chapter 7. Local Taylor Theorems 135
§7.1. Some one-dimensional Taylor theorems 135
§7.2. Some many-dimensional local Taylor theorems 139
§7.3. Critical points 147

Chapter 8. The Riemann Integral 161
§8.1. Where is the problem ? 161
§8.2. Riemann integration 164
§8.3. Integrals of continuous functions 173
§8.4. First steps in the calculus of variations 181
§8.5. Vector-valued integrals 192
Chapter 9. Developments and Limitations of the Riemann Integral

§9.1. Why go further? 195
§9.2. Improper integrals 197
§9.3. Integrals over areas 201
§9.4. The Riemann–Stieltjes integral 206
§9.5. How long is a piece of string? 213

Chapter 10. Metric Spaces 221

§10.1. Sphere packing 221
§10.2. Shannon’s theorem 224
§10.3. Metric spaces 229
§10.4. Norms and the interaction of algebra and analysis 234
§10.5. Geodesics 241

Chapter 11. Complete Metric Spaces 249

§11.1. Completeness 249
§11.2. The Bolzano–Weierstrass property 257
§11.3. The uniform norm 261
§11.4. Uniform convergence 265
§11.5. Power series 273
§11.6. Fourier series 282

Chapter 12. Contraction Mappings and Differential Equations 287

§12.1. Banach’s contraction mapping theorem 287
§12.2. Existence of solutions of differential equations 289
§12.3. Local to global 294
§12.4. Green’s function solutions 301

Chapter 13. Inverse and Implicit Functions 311

§13.1. The inverse function theorem 311
§13.2. The implicit function theorem 320
§13.3. Lagrange multipliers 328
Chapter 14. Completion 335

§14.1. What is the correct question? 335
§14.2. The solution 341
§14.3. Why do we construct the reals? ♦ 344
§14.4. How do we construct the reals? ♦ 348
§14.5. Paradise lost? ♦♦ 354

Appendix A. Ordered Fields 357
Appendix B. Countability 361
Appendix C. The Care and Treatment of Counterexamples 365
Appendix D. A More General View of Limits 371
Appendix E. Traditional Partial Derivatives 377
Appendix F. Another Approach to the Inverse Function Theorem 383
Appendix G. Completing Ordered Fields 387
Appendix H. Constructive Analysis 391
Appendix I. Miscellany 395
Appendix J. Executive Summary 401
Appendix K. Exercises 405

Bibliography 583
Index 585