Contents

List of Figures xiii
List of Tables xix
Preface xxii

1. INTRODUCTION
 1.1. Introduction 1
 1.2. Fault Detection and Isolation 3
 1.3. Redundancy 5
 1.4. Performance of FDI 7
 1.5. Robustness 7
 1.6. Reconfiguration and Fault Tolerant Flight Control Systems 9
 1.6.1. Self-repairing Flight Control Systems 9
 1.6.2. Fault Detection and Dynamic Reconfiguration 10
 1.6.3. Analytical Redundancy 11
 1.6.4. Game Theory and Real-time Parameter Insensitive Disturbance Attenuating Redesign 12
 1.6.5. Techniques for Reconfiguration 12
 1.7. Sensor/Actuator Fault Diagnosis 17
 1.7.1. Sensor Fault Detection in Flight Control Systems 17
 1.7.2. Integrated Sensor/Actuator FDI and Reconfigurable Control for Fault-Tolerant Flight Control System Design 20
References 21

2. GENERAL THEORY OF OBSERVERS 25
 2.1. Introduction 25
 2.2. Theory and Design of Observers 26
 2.2.1. Approaches to Observer Design 29
 2.3. Parameter Insensitive Observers 36
 2.4. Robustness of Observer-Based Controllers 39
2.4.1. An Observer Adjustment Procedure 42
2.5. Robust Observers: Doyle-Stein Observer 45
2.6. FailureInsensitive Luenberger Observer 51
2.7. Conclusion 54
References 54

3. LINEAR KALMAN FILTERING 55
3.1. Introduction 55
3.2. The Optimum Linear Discrete Kalman Filter 56
3.3. Optimum Discrete Kalman Filter Stability 61
3.4. Discrete Kalman Filter - Correlated System and Measurement Noise 62
3.5. General Discrete Kalman Filtering 65
3.6 Divergence in the Kalman Filler. Suboptimal Kalman Filters 69
3.7 The Methods of Numerical Stabilization of Kalman Filters. Square Root Filtering 71
3.8. Diagnostics of Kalman Filtering Algorithms 72
3.8.1. Monitoring Conditions for the Scalar Filter 73
3.8.2. Diagnostics of the Square Root Filter 75
3.9. Summary 83
References 84

4. NONLINEAR ESTIMATION AND SYSTEM IDENTIFICATION 87
4.1. Introduction 87
4.2. Linearized Kalman Filter 88
4.3. The Extended Kalman Filter 91
4.4. Derivation of EKF Equations for Nonlinear Flight Dynamics 92
4.4.1. Derivation of the Mathematical Model of the Aircraft Longitudinal Motion 93
4.4.2. Design of EKF to Estimate the Aircraft Longitudinal Motion 95
4.5. EKF and System Identification 103
4.5.1 An Example of Parameter Identification 104
4.6.1. Generation of Stopping Rules 109
4.6.2. Fault Detection in the Kalman Filter 110
4.6.3. Computation of the Covariance matrix of the Discrepancy Between Two Successive Estimates 112
4.7. An Experimental Example of Parameter Identification 114
4.8. Conclusion and Discussion 119
References 120
5. INTRODUCTION TO MONITORS, DETECTORS, AND DIAGNOSTICANS
 5.1. Introduction 123
 5.1.1 Model-Free Methods 124
 5.1.2 Model-based fault diagnosis 125
 5.2. Monitors 128
 5.2.1 The parity space approach 128
 5.2.2 Parameter identification approach 130
 5.2.3 Dedicated observer approach 132
 5.3. Detectors 136
 5.3.1 Hypothesis Testing 137
 5.3.2 Neymann-Pearson Criterion 142
 5.4. Diagnosticians 146
 5.5. Summary 151
References 151

6. AN OVERVIEW OF ALGORITHMS FOR FAILURE DETECTION AND ISOLATION 153
 6.1. Introduction 161
 6.2. Failure Detection Techniques
 6.2.1 Sensor Level Failures 161
 6.2.2 Failures in Computing Subsystem and Lanes 170
 6.2.3 Actuator and Control Surface Level Failures 171
 6.2.4 Robustness of Failure Detection Process to Parameter Changes in Dynamic Systems 181
 6.3. Summary 183
References 183

7. THE INNOVATION APPROACH TO FAULT DETECTION 187
 7.1. Introduction 187
 7.2. The Innovation Sequence 189
 7.3. The Methods for Checking the Statistical Characteristics of Innovation Sequence
 7.3.1. The Appropriateness Criterions of Innovation Sequence to the White Noise 192
 7.3.2. The Criterions, Checking the Mean of the Innovation Sequence 195
 7.3.3. The Classical Criterions, Checking the Covariance Matrices of the Innovation Sequence 197
 7.4. Some New Methods for Checking the Covariance Matrices of Innovation Sequence 204
 7.4.1. Checking the Covariance Matrices of the Innovation Sequence via the Statistics of Relation Between Two Quadratic Forms 204
 7.4.2. Check of the Generalized Variance of the Normalized Innovation Sequence 208
 7.4.3. Simultaneous Checking the Mean and Covariance Matrices of the Innovation Sequence 211
7.5. Conclusion and Discussion 220

References 221

8. SENSOR FAULT DETECTION AND ISOLATION IN FLIGHT CONTROL SYSTEMS BASED ON INNOVATION APPROACH 225

8.1. Introduction 225

8.2. Innovation Sequence Application to Aircraft Sensor Fault Detection 226

8.2.1. Simulation of Aircraft Dynamics via Kalman Filter 227

8.2.2. Fault Detection by Verifying the Innovation Mean 228

8.2.3. Fault Detection by Verifying the Innovation Covariance 230

8.3. Comparison of Checking Covariance Matrix Algorithms 232

8.4. Fault Detection via Spectral Norm of Innovation Matrix 243

8.5. Sensor Fault Isolation Algorithm 248

8.6. Aircraft Application of Sensor Fault Isolation Algorithm 252

8.7. Conclusion and Discussion 254

References 255

9. ROBUST KALMAN FILTERS FOR FDI 259

9.1. Introduction 259

9.2. Robust Kalman Filter Insensitive to Actuator Failures 260

9.2.1 Simulation of RKF based on Doyle-Stein condition 262

9.3. Robust Kalman Filter Insensitive to Abnormal Measurements 265

9.4. Robust Kalman Filter Insensitive to Sensor Failures 269

9.5. Actuator Fault Diagnosis based on Robust Kalman Filter 271

9.5.1. Kalman Filter for Actuator Parameter Estimation 271

9.5.2. Actuator Fault Detection Algorithm 273

9.5.3. An illustrative example 274

9.6. Conclusion and Discussion 280

References 281

10. FLIGHT CONTROL RECONFIGURATION 283

10.1. Introduction 283

10.2 An Automatic Redesign Approach for Restructurable Control Systems 284

10.2.1 Introduction 284

10.2.2. The Automatic Redesign Procedure 285

10.2.3 Development of the Automatic Redesign Procedure 288

10.2.4. Solution of the Optimization Problem 291
10.3. Control Systems Insensitivity to Variations in Dynamic System Parameters 294
10.4. Reconfiguration Based on Min-max Type Criteria 296
 10.4.1. The Min-max Principle 296
 10.4.2. Parameter Insensitive, Disturbance Attenuating Redesign 297
 10.4.3. Simulation of the Reconfiguration Algorithm 301
10.5. The EKF Based Reconfigurable Control 309
 10.5.1. Identification of the Control Distribution Matrix 309
 10.5.2. The EKF Based Reconfigurable Control Algorithm 315
10.6. Fault-Tolerant Flight Control System Based on Innovation Approach 321
10.7. Conclusion and Discussion 324
References 324
Index 327
About the Authors 341