Advanced Excel®
for Scientific Data Analysis

Robert de Levie
Contents

1 **Survey of Excel**

1.1 Spreadsheet basics 1
1.2 Making 2-D graphs 4
1.3 Making 3-D surface graphs 10
1.4 Making surface maps 13
1.5 Making movies 16
1.6 Printing, copying, linking & embedding 18
1.7 Setting up the spreadsheet 20
1.7.1 Data Analysis Toolpak 20
1.7.2 Solver 20
1.7.3 VBA Help File 21
1.7.4 Additional macros 21
1.7.5 Additional files 22
1.7.6 Commercial tools 22
1.7.7 Choosing the default settings 23
1.8 Importing data 25
1.9 Error messages 25
1.10 Help 26
1.11 Functions, subroutines & macros 26
1.11.1 Custom functions 27
1.11.2 Custom subroutines & macros 28
1.12 An example: interpolation 29
1.13 Handling the math 37
1.13.1 Complex numbers 37
1.13.2 Matrices 38
1.14 Handling the funnies 40
1.14.1 The binomial coefficient 40
1.14.2 The exponential error function complement 41
1.15 Algorithmic accuracy 44
1.16 Mismatches between Excel and VBA 49
1.17 Summary 51
1.18 For further reading 52

2 **Simple linear least squares** 53

2.1 Repeat measurements 54
3 Further linear least squares

3.1 Fitting data to a polynomial 98
3.2 Fitting data to a parabola 99
3.3 The iodine vapor spectrum 100
3.4 The intersection of two parabolas 104
3.5 Multiparameter fitting 107
3.6 The infrared spectrum of H35Cl 107
3.7 Spectral mixture analysis 111
3.8 How many adjustable parameters? 113
3.9 The standard deviation of the fit 115
3.10 The F-test 115
3.11 Orthogonal polynomials 117
3.12 Gas-chromatographic analysis of ethanol 122
3.13 Raman spectrometric analysis of ethanol 125
3.14 Heat evolution during cement hardening 131
3.15 Least squares for equidistant data 135
3.16 Weighted least squares 140
3.17 An exponential decay 144
3.18 Enzyme kinetics 144
3.19 Fitting data to a Lorentzian 148
3.20 Miscellany 150
3.20.1 The boiling point of water 150
3.20.2 The vapor pressure of water 151
Contents

3.20.3 Fitting data to a high-order polynomial 151
3.21 Summary 153
3.22 For further reading 156

4 Nonlinear least squares 158
4.1 Cosmic microwave background radiation 161
4.2 The I$_2$ potential energy vs. distance profile 165
4.3 Titrating an acid with a strong base 169
4.4 Conductometric titration of an acid mixture 176
4.5 Fitting a luminescence decay 180
4.6 Fitting a curve with multiple peaks 182
4.7 Fitting a multi-component spectrum with wavenumber-shifted constituents 187
4.8 Constraints 192
4.9 Fitting a curve through fixed points 193
4.10 Fitting lines through a common point 194
4.11 Fitting a set of curves 198
4.12 Fitting a discontinuous curve 201
4.13 Piecewise fitting a continuous curve 203
4.14 Enzyme kinetics, once more 205
4.15 The Lorentzian revisited 206
4.16 Linear extrapolation 207
4.17 Guarding against false minima 208
4.18 General least squares fit to a straight line 213
4.19 General least squares fit to a complex quantity 217
4.20 Miscellany 219
4.20.1 Viscosity vs. temperature and pressure 219
4.20.2 Potentiometric titration of a diprotic base 221
4.20.3 Analyzing light from a variable star 224
4.20.4 The growth of a bacterial colony 225
4.20.5 Using NIST data sets 226
4.21 Summary 227
4.22 For further reading 229

5 Fourier transformation 230
5.1 Sines and cosines 230
5.2 Square waves and pulses 235
5.3 Aliasing and sampling 239
5.4 Leakage 242
5.5 Uncertainty 243
5.6 Filtering 245
5.7 Differentiation 255
5.8 Interpolation 261
5.9 Data compression 265
5.10 Analysis of the tides 268
5.11 Summary 277
5.12 For further reading 279

6 Convolution, deconvolution, and time-frequency analysis 280

6.1 Time-dependent filtering 280
6.2 Convolution of large data sets 285
6.3 Unfiltering 291
6.4 Convolution by Fourier transformation 295
6.5 Deconvolution by Fourier transformation 300
6.6 Iterative van Cittert deconvolution 311
6.7 Iterative deconvolution using Solver 321
6.8 Deconvolution by parameterization 325
6.9 Time-frequency analysis 331
6.10 The echolocation pulse of a bat 335
6.11 Summary 337
6.12 For further reading 338

7 Numerical integration of ordinary differential equations 339

7.1 The explicit Euler method 340
7.2 The semi-explicit Euler method 347
7.3 Using custom functions 350
7.4 Extreme parameter values 354
7.5 The explicit Runge-Kutta method 356
7.6 The Lotka oscillator 1 361
7.7 The Lotka oscillator 2 365
7.8 The Lotka oscillator 3 366
7.9 Stability 368
7.10 Chaos 372
7.11 Summary 374
7.12 For further reading 375

8 Write your own macros 377

8.1 Reading the contents of a cell 378
9 Macros for least squares & for the propagation of imprecision

9.1 General comments
9.2 LS
9.3 LSPoly
9.4 LSMulti
9.5 LSPermute
 LLSS
9.6 Ortho
9.7 ELS
9.8 WLS
9.9 SolverAid
9.10 Propagation
9.11 Matrix operations
 Invert
 Multiply
 Transpose
10 Fourier transform macros

10.1 Fourier transformation 513

FT 518

10.2 Direct (de)convolution 519

10.3 Fourier transform (de)convolution 523

10.4 Iterative deconvolution 529

10.5 Time-frequency analysis 540

10.6 Semi-integration & semi-differentiation 544

11 Miscellaneous macros

11.1 Terms & conditions 549

11.2 Insert a toolbar 551

11.3 Insert a menu 559

11.4 Movie demos 566

11.5 Lagrange interpolation 572

11.6 SolverScan 573

11.6.1 Calling Solver with VBA 574

11.6.2 Programming details 575

11.6.3 Possible extensions 576

11.7 Mapper 582

11.8 RootFinder 596

Appendix

A.1 The basic spreadsheet operations 599

A.2 Some common mathematical functions 600

A.3 Trigonometric and related functions 602

A.4 Some engineering functions 602

A.5 Functions involving complex numbers 603

A.6 Matrix operations 604

A.7 Excel error messages 605

A.8 Some shortcut keystrokes for pc & Mac 605

A.9 Installation requirements & suggestions 607

Epilogue

Index 610