GEOMETRIC FUNCTION THEORY IN ONE AND HIGHER DIMENSIONS

IAN GRAHAM
University of Toronto
Toronto, Ontario, Canada

GABRIELA KOHR
Babeș-Bolyai University
Cluj-Napoca, Romania

Marcel Dekker, Inc.
New York • Basel
Contents

Preface v
Introduction xiii

I Univalent functions 1

1 Elementary properties of univalent functions 3
 1.1 Univalence in the complex plane 3
 1.1.1 Elementary results in the theory of univalent functions.
 Examples of univalent functions 3
 1.1.2 The area theorem 9
 1.1.3 Growth, covering and distortion results in the class S 13
 1.1.4 The maximum modulus of univalent functions 18
 1.1.5 Two-point distortion results for the class S 21

2 Subclasses of univalent functions in the unit disc 27
 2.1 Functions with positive real part. Subordination and the Helgolz formula 27
 2.1.1 The Carathéodory class. Subordination 27
 2.1.2 Applications of the subordination principle 32
 2.2 Starlike and convex functions 36
 2.3 Starlikeness and convexity of order α. Alpha convexity 54
 2.3.1 Starlikeness and convexity of order α 54
 2.3.2 Alpha convexity 58
Contents

2.4 Close-to-convexity, spirallikeness and Φ-likeness in the unit disc 63
2.4.1 Close-to-convexity in the unit disc 63
2.4.2 Spirallike functions in the unit disc 73
2.4.3 Φ-like functions on the unit disc 79

3 The Loewner theory ... 87
3.1 Loewner chains and the Loewner differential equation 87
3.1.1 Kernel convergence .. 87
3.1.2 Subordination chains and kernel convergence 94
3.1.3 Loewner's differential equation ... 100
3.1.4 Remarks on Bieberbach's conjecture ... 112
3.2 Applications of Loewner's differential equation to the study of univalent functions ... 117
3.2.1 The radius of starlikeness for the class S and the rotation theorem 118
3.2.2 Applications of the method of Loewner chains to characterize some subclasses of S ... 126
3.3 Univalence criteria ... 130
3.3.1 Becker's univalence criteria .. 130
3.3.2 Univalence criteria involving the Schwarzian derivative 132
3.3.3 A generalization of Becker's and Nehari's univalence criteria 140

4 Bloch functions and the Bloch constant ... 145
4.1 Preliminaries concerning Bloch functions .. 145
4.2 The Bloch constant problem and Bonk's distortion theorem 151
4.3 Locally univalent Bloch functions .. 157
4.3.1 Distortion results for locally univalent Bloch functions 157
4.3.2 The case of convex functions ... 163

5 Linear invariance in the unit disc ... 165
5.1 General ideas concerning linear-invariant families 165
5.2 Extremal problems and radius of univalence .. 172
5.2.1 Bounds for coefficients of functions in linear-invariant families .. 172
5.2.2 Radius problems for linear-invariant families 174

II Univalent mappings in several complex variables and complex Banach spaces 181

6 Univalence in several complex variables 183

6.1 Preliminaries concerning holomorphic mappings in \(\mathbb{C}^n \) and complex Banach spaces ... 184
6.1.1 Holomorphic functions in \(\mathbb{C}^n \) ... 184
6.1.2 Classes of domains in \(\mathbb{C}^n \). Pseudoconvexity 188
6.1.3 Holomorphic mappings ... 191
6.1.4 Automorphisms of the Euclidean unit ball and the unit polydisc ... 195
6.1.5 Holomorphic mappings in complex Banach spaces .. 197
6.1.6 Generalizations of functions with positive real part .. 202
6.1.7 Examples and counterexamples ... 210

6.2 Criteria for starlikeness ... 213
6.2.1 Criteria for starlikeness on the unit ball in \(\mathbb{C}^n \) or in a complex Banach space ... 213
6.2.2 Starlikeness criteria on more general domains in \(\mathbb{C}^n \) .. 217
6.2.3 Sufficient conditions for starlikeness for mappings of class \(C^1 \) ... 219
6.2.4 Starlikeness of order \(\gamma \) in \(\mathbb{C}^n \) ... 221

6.3 Criteria for convexity ... 223
6.3.1 Criteria for convexity on the unit polydisc and the Euclidean unit ball ... 223
6.3.2 Necessary and sufficient conditions for convexity in complex Banach spaces ... 230
6.3.3 Quasi-convex mappings on the unit ball of \(\mathbb{C}^n \) ... 238

6.4 Spirallikeness and \(\Phi \)-likeness in several complex variables ... 244
7 Growth, covering and distortion results for starlike and convex mappings in \mathbb{C}^n and complex Banach spaces 255

7.1 Growth, covering and distortion results for starlike mappings in several complex variables and complex Banach spaces 256

7.1.1 Growth and covering results for starlike mappings on the unit ball and some pseudoconvex domains in \mathbb{C}^n. Extensions to complex Banach spaces 256

7.1.2 Bounds for coefficients of normalized starlike mappings in \mathbb{C}^n 262

7.1.3 A distortion result for a subclass of starlike mappings in \mathbb{C}^n 268

7.2 Growth, covering and distortion results for convex mappings in several complex variables and complex Banach spaces 271

7.2.1 Growth and covering results for convex mappings 271

7.2.2 Covering theorem and the translation theorem in the case of nonunivalent convex mappings in several complex variables 278

7.2.3 Bounds for coefficients of convex mappings in \mathbb{C}^n and complex Hilbert spaces 281

7.2.4 Distortion results for convex mappings in \mathbb{C}^n and complex Hilbert spaces 286

8 Loewner chains in several complex variables 295

8.1 Loewner chains and the Loewner differential equation in several complex variables 295

8.1.1 The Loewner differential equation in \mathbb{C}^n 295

8.1.2 Transition mappings associated to Loewner chains on the unit ball of \mathbb{C}^n 312

8.2 Close-to-starlike and spirallike mappings of type alpha on the unit ball of \mathbb{C}^n 322

8.2.1 An alternative characterization of spirallikeness of type alpha in terms of Loewner chains 322

8.2.2 Close-to-starlike mappings on the unit ball of \mathbb{C}^n 324
8.3 Univalent mappings which admit a parametric representation 330
 8.3.1 Examples of mappings which admit parametric representation on the unit ball of \mathbb{C}^n 330
 8.3.2 Growth results and coefficient bounds for mappings in $S_0^p(B)$ 334
8.4 Applications of the method of Loewner chains to univalence criteria on the unit ball of \mathbb{C}^n 348
8.5 Loewner chains and quasiconformal extensions of holomorphic mappings in several complex variables 353
 8.5.1 Construction of quasiconformal extensions by means of Loewner chains 353
 8.5.2 Strongly starlike and strongly spirallike mappings of type α on the unit ball of \mathbb{C}^n 370

9 Bloch constant problems in several complex variables 377
 9.1 Preliminaries and a generalization of Bonk's distortion theorem 377
 9.2 Bloch constants for bounded and quasiregular holomorphic mappings 384
 9.3 Bloch constants for starlike and convex mappings in several complex variables 390

10 Linear invariance in several complex variables 395
 10.1 Preliminaries concerning the notion of linear invariance in several complex variables 396
 10.1.1 L.I.F.'s and trace order in several complex variables 396
 10.1.2 Examples of L.I.F.'s on the Euclidean unit ball of \mathbb{C}^n 399
 10.2 Distortion results for linear-invariant families in several complex variables 401
 10.2.1 Distortion results for L.I.F.'s on the Euclidean unit ball of \mathbb{C}^n 401
 10.2.2 Distortion results for L.I.F.'s on the unit polydisc of \mathbb{C}^n 410
 10.3 Examples of L.I.F.'s of minimum order on the Euclidean unit ball and the unit polydisc of \mathbb{C}^n 414
10.3.1 Examples of L.I.F.'s of minimum order on the Euclidean unit ball of \mathbb{C}^n ... 414
10.3.2 Examples of L.I.F.'s of minimum order on the unit poly-disc of \mathbb{C}^n .. 426
10.4 Norm order of linear-invariant families in several complex variables ... 429
10.5 Norm order and univalence on the Euclidean unit ball of \mathbb{C}^n ... 434
10.6 Linear-invariant families in complex Hilbert spaces 440

11 Univalent mappings and the Roper-Suffridge extension operator 443

11.1 Convex, starlike and Bloch mappings and the Roper-Suffridge extension operator .. 444
11.2 Growth and covering theorems associated with the Roper-Suffridge extension operator .. 456
11.3 Loewner chains and the operator $\Phi_{n,\alpha}$... 461
11.4 Radius problems and the operator $\Phi_{n,\alpha}$... 466
11.5 Linear-invariant families and the operator $\Phi_{n,\alpha}$ 469

Bibliography ... 477

List of Symbols ... 521

Index ... 527