PROCEEDINGS OF THE IXth INTERNATIONAL WORKSHOP ON FIRE BLIGHT

Convener

C.N. Hale

SUB Göttingen 7
216 793 718

\textbf{Standort: BBF}

Napier, New Zealand
8-12 October, 2001

Organised by ISHS
Commission Plant Protection
Working Group on Fire Blight

Acta Horticulturae 590
November 2002
LIST OF CONTENTS

Acknowledgements 5
Opening Address 9
Report of the Business Meeting 11
List of Contents 13
List of Authors 21
List of Participants 23

Spread and Economics

Present Worldwide Distribution of Fire Blight
T. van der Zwet 33

Chronicle of a Disease Foretold (That Advances Slowly): The 2001 Spanish Situation

National Surveys did not Detect Erwinia amylovora on Host Plants in Australia
B. Rodoni, R. Gardner, R. Giles, S. Wimalajeewa, M. Cole and T. van der Zwet 39

Evaluation of Buffer Zone Size and Inspection Number Reduction on Phytosanitary Risk Associated with Fire Blight and Export of Mature Apple Fruit
R.G. Roberts 47

The Role of Honeybees in Spreading Erwinia amylovora
M. Alexandrova, B. Cimini, C. Bazzi, E. Carpana, S. Massi and A.G. Sabatini 55

A Re-examination of Fire Blight Epidemiology in England
E. Billing and A.M. Berrie 61

Standardization of Diagnostic Protocols (Diagpro) for Erwinia amylovora in the European Union.
M.M. López, M.T. Gorris, P. Llop, J. Peñalver and M. Cambra 69

Fire Blight Situation in Switzerland

Ornamental Hosts of Erwinia amylovora and the Effect of the Fire Blight Control Policy in the Netherlands
M. van Teylingen 81

Isolation of Erwinia amylovora from Blighted Plums (Prunus domestica) and Potato Roses (Rosa rugosa)
J.L. Vanneste, S. Lex, M. Vermeulen and F. Berger 89

Fire Blight in the Republic of Moldova: Present Status of its Occurrence and Characteristics of its Pathogen Erwinia amylovora
A.N. Nicolaev, P. Laux and W. Zeller 95

Proc. 9th Int. Workshop on Fire Blight
Eds. C. Hale and R. Mitchell
Acta Hort. 590, ISHS 2002 13
The Status of Fire Blight on Pome Fruits in Iran
K. Rahnama and M. Mazarei

Epidemiology and Prediction

A Tribute to Paul W. Steiner
G.W. Lightner

The Three-Season Evolution of a Fire Blight Outbreak in a Nursery Using an Asymptomatic Apple Bud Wood Source Contaminated with Erwinia amylovora
T.J. Smith

Fluorescence Technology as a Tool to Study the Infection Pattern of Apple Seedlings by Erwinia amylovora
K. Heyens, M. vande Ven, R. Valcke, T. Deckers and M. Maes

Investigation of the Reliability of Easy-to-Use Methods to Predict Erwinia amylovora Infection Risk in Apple Orchards
T. Bubán, P. Sallai, A. Varga and L. Dorgai

Host Susceptibility as a Factor in Control Strategies of Fire Blight in European Pear Growing
T. Deckers and H. Schoofs

Characterization of an Erwinia sp. Isolated from Necrotic Pear Blossoms in Valencia, Spain

Effects of Weather Conditions in Development of “Trauma” Blight in Apple Shoots
D.I. Breth, H.S. Aldwinckle and W. Turechek

Comparison of Models for Blossom Blight Prediction in New York
D.I. Breth and H.S. Aldwinckle

The Viability and Persistence of Erwinia amylovora in Apples Discarded in an Orchard Environment

Overwintering of Erwinia amy!ovora in Naturally and Artificially Infected Apple Shoots
K. Kielak, P. Sobieczewski and J. Pulawska

Detection of Erwinia amylovora in and on Apple Tissue Using PCR
J. Pulawska and P. Sobieczewski

Predicting the Occurrence of Fire Blight in the San Joaquin Valley of California
B.A. Holtz, E.W. Hoffman and B.L. Teviotdale

Rapid Estimation of the Epiphytic Population Size of Erwinia amylovora by PCR
L. Dorgai and T. Bubán
Population Dynamics of *Erwinia amylovora* on Different Blossom Elements of Pear and Apple
T. Hasler and L. Mamming

Evaluation of Natural Diversity among *Erwinia amylovora* Isolates on the Basis of Total Cellular Protein and Fatty Acid Patterns
R. Zarnowski, T. Lewicka and R.J. Ellis

Reduction of Fire Blight Infection by Manipulation of Pear Tree Water Status
M. Toselli, D. Malaguti, B. Marangoni, L. Cabrini, C. Bazzi, G. Sponza, and D. Scudellari

Erwinia amylovora Longevity in Beehives, Beehive Products and Honeybees
M. Alexandrova, C. Porrini, C. Bazzi, E. Carpana, M. Bigliardi and A.G. Sabatini

Fire Blight in Emilia-Romagna (Italy): Searching Possible Relationships Between Epidemic Spread, Climate and Territory using the Regional Geographic Database and GIS Technology
G. Benedettini, R. Bugiani, A. Calzolari, F. Finelli, P. Govoni, M. Gherardi and G.L. Mazzoli

Fireblight Management

Management of Fire Blight with Gibberellin Inhibitors and SAR Inducers
K.L. Maxson and A.L. Jones

Biological Control of Fire Blight by using *Rahnella aquatilis* Ra39 and *Pseudomonas* spec. R1
P. Laux, Ö. Baysal and W. Zeller

P10c: A New Biological Control Agent for Control of Fire Blight which can be Sprayed or Distributed Using Honey Bees
J.L. Vanneste, D.A. Cornish, J. Yu and M.D. Voyle

Genes for Biosynthesis of Pantocin A and B by *Pantoea agglomerans* Eh318
S.A.I. Wright and S.V. Beer

Newest Results on the Biocontrol of Fire Blight in Germany
W. Zeller and P. Laux

Interrelationship of Temperature, Flower Development and Biological Control of Fire Blight
P.L. Pusey

Coping with Fire Blight in Pears: Experience Gained in Israel in the Fire Blight Management (Fire-Man) Project
D. Shtienberg, H. Shwartz, S. Manulis, G. Kritzman, M. Zilberstaine, D. Oppenheim and Z. Herzog
Trials with Applying Chemical Agents Other than Bactericides to Control Fire Blight in Pear Orchards
T. Bubán, P. Sallai, E. Obzsut-Truskovszky and L. Hertelendy

Systemic Acquired Resistance (SAR) - Effect of BTH Against Fire Blight
Ö. Baysal, P. Laux and W. Zeller

Further Studies on the Induced Resistance (IR) Effect of Plant Extract from Hedera helix against Fire Blight (Erwinia amylovora)
Ö. Baysal, P. Laux and W. Zeller

Biocontrol Agent Pantoea agglomerans Strain NZ501 Induces a Resistance-Like Response in Kiwifruit and Tobacco Cells
J.L. Vanneste, J. Yu, T. Reglinski and A. Allan

The Peptide Antibiotic Produced by Pantoea agglomerans Eh252 is a Microcin
J.L. Vanneste, D.A. Cornish, J. Yu and M.D. Voyle

Bacillus subtilis Strain BS-F3: Colonization of Pear Organs and its Action as a Biocontrol Agent
M. Alexandrova, C. Bazzi and P. Lameri

Characterisation of Two Fluorescent Strains of Pseudomonas as Biocontrol Agents Against Fire Blight
O. Galasso, G. Sponza, C. Bazzi and J.L. Vanneste

A New Experimental Design for Testing Control Agents for Fire Blight on Blossoms under Nearly Natural Conditions
E. Moltmann, A. Fried and W. Jelkmann

Inhibition of Erwinia amylovora and Potential Antagonistic Bacteria by Essential Oils and Natural Compounds
J.L. Vanneste and R.J. Boyd

Enhancing Flower Colonization of Pseudomonas fluorescens Strain A506, and the Efficacy of Apogee and Serenade, for Fire Blight Control in the San Joaquin Valley of California
B.A. Holtz, E.W. Hoffman, S.E. Lindow and B.L. Teviotdale

Evaluation of Control of Fire Blight Infection of Apple Blossoms and Shoots with SAR Inducers, Biological Agents, a Growth Regulator, Copper Compounds, and Other Materials
H.S. Aldwinckle, M.V. Bhaskara Reddy and J.L. Norelli

Plant Based Strategies for Control

Induced Resistance to Erwinia amylovora in Apple and Pear
M.N. Brisset, M. Faize, C. Heintz, S. Cesbron, R. Chartier, M. Tharaud and J.P. Paulin

Salicylic Acid as a Possible Component in the Susceptibility of Apple Rootstocks to Fire Blight Infections
K. Heyens, R. Valcke and T. Deckers
Activity of Peroxidases in Plant Material Infected with *Erwinia amylovora*
M. Keck, S. Richter, B. Suarez, E. Kopper and E. Jungwirth

Natural Occurrence of Fire Blight in USDA Apple Germplasm Collection After 10 Years of Observation
P.L. Forsline and H.S. Aldwinckle

Resistance of 'Geneva' Apple Rootstocks to *Erwinia amylovora* When Grown as Potted Plants and Orchard Trees

Host-pathogen Interactions of *Erwinia amylovora* on Apple and Pear in New Zealand

Fire Blight Resistance of *Malus* species from Sichuan (China), Russian Caucasus, Turkey, and Germany
H.S. Aldwinckle, H.L. Gustafson, P.L. Forsline and M.V. Bhaskara Reddy

Evaluation of Apple Varieties for Susceptibility to *Erwinia amylovora* by Artificial Inoculation Under Field Conditions
S.K. Mohan, E. Fallahi and V.P. Bijman

Field Evaluation of *Prunus* Species for Susceptibility to *Erwinia amylovora* by Artificial Inoculation
S.K. Mohan, V.P. Bijman and E. Fallahi

Stability of Fire Blight Resistance in Apple
K. Richter and C. Fischer

Selection of a Genotype of *Cotoneaster* with a High Level of Resistance to Fire Blight
V. Bellenot-Kapusta, R. Chartier, M.N. Brisset and J.P. Paulin

Plant Transformation for Induction of Fire Blight Resistance: Transgenic Apples Expressing Viral EPS-depolymerase
V. Hanke, W.-S. Kim and K. Geider

A New Approach to Evaluate Fire Blight Resistance in vitro
V. Hanke and K. Geider

Expression of a Depolymerase Gene in Transgenic Pears Increased only Slightly their Fire Blight Resistance
M. Malnoy, E. Chevreau and M.N. Brisset

Transformation of SR1 Tobacco and JTE-H Apple Rootstock with the EPS-depolymerase Gene from an *Erwinia amylovora* Phage
S. Sule, W.-S. Kim, K. Geider and E. Kiss

Biochemistry and Molecular Advances

Genetic Diversity Among *Erwinia amylovora*’s Ubiquitous Plasmid pEA29
G.C. McGhee, G.C. Foster and A.L. Jones
Molecular Comparison and Differentiation of *Erwinia* Strains Causing Fire Blight and Asian Pear Blight 423
S. Jock, W.-S. Kim and K. Geider

Comparison of *groEL* Sequences, 16S-23S rDNA Spacers, and pEA29-Type Plasmids from *Erwinia amylovora* and *E. pyrifoliae* 429
E.L. Schnabel, G.C. McGhee and A.L. Jones

Secretion of Hrp and Dsp Proteins Via the Hrp Pilus During Type III Secretion in *Erwinia amylovora* 441
Q. Jin, W. Hu, G.C. McGhee, P. Hart, A.L. Jones and S.Y. He

Competition Between the Secretion of Hrp Proteins and Flagellins During the Infection Process by *Erwinia amylovora* 449
M.N. Brisset, M. Faize, C. Heintz, S. Cesbron, R. Chartier, M. Tharaud, M.A. Barny and J.P. Paulin

Using the Green Fluorescent Protein and Other Markers to Determine Virulence of *Erwinia amylovora* 451
J. Bogs, S. Jock, M. Hildebrand, W.-S. Kim, K. Geider and K. Richter

Regulation and Biochemistry of Exopolysaccharide Synthesis of the Fire Blight Pathogen *Erwinia amylovora* and Pear Pathogens from Korea and Japan 457
K. Geider, Z. Du, M. Hildebrand, W.-S. Kim, M. Menggad, and M. Schollmeyer

DspE of *Erwinia amylovora* Interacts with Receptor Kinases of Apple 463
X. Meng, J.M. Bonasera, J.F. Kim, R.M. Nissinen and S.V. Beer

Mechanisms Underlying Disease and Resistance in Host Plants of Fire Blight 467
J.S. Venisse, J.P. Paulin and M.N. Brisset

Gene Expression in Apple in Response to Inoculation with *Erwinia amylovora* 469
J.M. Bonasera and S.V. Beer

Alteration of Phenylpropanoid Biosynthesis of Fruit Trees as a Tool for Enhancement of Fire Blight Resistance 477

Biochemical and Molecular Biological Investigations with Respect to Induction of Fire Blight Resistance in Apple and Pear by Transiently Altering the Flavanoid Metabolism with Specific Enzyme Inhibitors 485
H. Halbwirth, W. Kampan, K. Stich, T.C. Fischer, B. Meisel, G. Forkmann and W. Rademacher

Characterisation of Transposon, Genes and Mutations which Confer Streptomycin Resistance in Bacterial Strains Isolated from New Zealand Orchards 493
J.L. Vanneste and M.D. Voyle