Contents

List of contributors xvii

Preface xxv

1 Introduction
 Gary Gibbons and Paul Shellard 1
 1.1 Popular symposium 2
 1.2 Spacetime singularities 3
 1.3 Black holes 4
 1.4 Hawking radiation 5
 1.5 Quantum gravity 6
 1.6 M theory and beyond 7
 1.7 De Sitter space 8
 1.8 Quantum cosmology 9
 1.9 Cosmology 9
 1.10 Postscript 10

Part 1 Popular symposium 15

2 Our complex cosmos and its future
 Martin Rees 17
 2.1 Introduction 17
 2.2 The universe observed 17
 2.3 Cosmic microwave background radiation 22
 2.4 The origin of large-scale structure 24
 2.5 The fate of the universe 26
 2.6 The very early universe 30
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.7</td>
<td>Multiverse?</td>
<td>35</td>
</tr>
<tr>
<td>2.8</td>
<td>The future of cosmology</td>
<td>36</td>
</tr>
<tr>
<td>3</td>
<td>Theories of everything and Hawking's wave function of the universe</td>
<td>38</td>
</tr>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>38</td>
</tr>
<tr>
<td>3.2</td>
<td>Different things fall with the same acceleration in a gravitational field</td>
<td>38</td>
</tr>
<tr>
<td>3.3</td>
<td>The fundamental laws of physics</td>
<td>40</td>
</tr>
<tr>
<td>3.4</td>
<td>Quantum mechanics</td>
<td>45</td>
</tr>
<tr>
<td>3.5</td>
<td>A theory of everything is not a theory of everything</td>
<td>46</td>
</tr>
<tr>
<td>3.6</td>
<td>Reduction</td>
<td>48</td>
</tr>
<tr>
<td>3.7</td>
<td>The main points again</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>49</td>
</tr>
<tr>
<td>4</td>
<td>The problem of spacetime singularities: implications for quantum gravity?</td>
<td>51</td>
</tr>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>51</td>
</tr>
<tr>
<td>4.2</td>
<td>Why quantum gravity?</td>
<td>51</td>
</tr>
<tr>
<td>4.3</td>
<td>The importance of singularities</td>
<td>54</td>
</tr>
<tr>
<td>4.4</td>
<td>Entropy</td>
<td>58</td>
</tr>
<tr>
<td>4.5</td>
<td>Hawking radiation and information loss</td>
<td>61</td>
</tr>
<tr>
<td>4.6</td>
<td>The measurement paradox</td>
<td>63</td>
</tr>
<tr>
<td>4.7</td>
<td>Testing quantum gravity?</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>Useful references for further reading</td>
<td>73</td>
</tr>
<tr>
<td>5</td>
<td>Warping spacetime</td>
<td>74</td>
</tr>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>74</td>
</tr>
<tr>
<td>5.2</td>
<td>A first glimpse of the Golden Age: 1964–74</td>
<td>80</td>
</tr>
<tr>
<td>5.3</td>
<td>LISA: mapping black holes with gravitational waves</td>
<td>81</td>
</tr>
<tr>
<td>5.4</td>
<td>The Golden Age again: colliding black holes</td>
<td>87</td>
</tr>
<tr>
<td>5.5</td>
<td>LIGO/VIRGO/GEO: probing colliding black holes with gravitational waves</td>
<td>89</td>
</tr>
<tr>
<td>5.6</td>
<td>Quantum behavior of human-sized objects</td>
<td>92</td>
</tr>
<tr>
<td>5.7</td>
<td>Probing the big bang with gravitational waves</td>
<td>94</td>
</tr>
<tr>
<td>5.8</td>
<td>Cosmic censorship: betting with Stephen</td>
<td>96</td>
</tr>
<tr>
<td>5.9</td>
<td>Time travel</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Useful references for further reading</td>
<td>103</td>
</tr>
</tbody>
</table>
6 Sixty years in a nutshell
Stephen Hawking

6.1 Introduction 105
6.2 How it began 105
6.3 General relativity and cosmology 106
6.4 Mach's principle and Wheeler–Feynman electrodynamics 107
6.5 The steady state 109
6.6 Gravity and the expanding universe 110
6.7 Collapsing stars 111
6.8 Hawking radiation 112
6.9 Inflation 114
6.10 M theory and the future 115
6.11 Conclusion 117

Part 2 Spacetime singularities 119

7 Cosmological perturbations and singularities
George Ellis

7.1 Introduction 121
Part A: Cosmological perturbations 122
7.2 Fluids and scalar fields 122
7.3 Cosmic background radiation 130
7.4 Issues 135
Part B: Cosmological singularities 138
7.5 Analytic direct approach 139
7.6 Indirect method 141
7.7 Issues 143
7.8 Conclusion 153
References 153

8 The quantum physics of chronology protection
Matt Visser

8.1 Why is chronology protection even an issue? 161
8.2 Paradoxes and responses 163
8.3 Elements of chronology protection 165
8.4 Semiclassical arguments 167
8.5 The failure of semiclassical gravity 169
8.6 Where we stand 171
References 173

9 Energy dominance and the Hawking–Ellis vacuum
conservation theorem
Brandon Carter 177
9.1 Introduction 177
9.2 The energy dominance condition 179
9.3 The vacuum conservation theorem 181
References 183

10 On the instability of extra space dimensions
Roger Penrose 185
10.1 The issue of functional freedom 185
10.2 Functional freedom in higher-dimensional theories 189
10.3 Classical instability of extra dimensions 195
10.4 The holographic conjecture 198
References 200

Part 3 Black holes 203

11 Black hole uniqueness and the inner horizon stability problem
Werner Israel 205
11.1 Introduction 205
11.2 The trailblazers: Moscow 1964 206
11.3 Cambridge 1965–71 207
11.4 Descent into the interior 209
11.5 Internal evolution problem 210
11.6 Spherical models 212
11.7 The generic case 214
11.8 Conclusions 215
11.9 Acknowledgements 215
References 215

12 Black holes in the real universe and their prospects as probes of relativistic gravity
Martin Rees 217
12.1 Introduction 217
12.2 Stellar mass holes 218
12.3 Supermassive holes 219
12.4 Scenarios for black hole formation 220
12.5 The galactic context 222
12.6 Do the candidate holes obey the Kerr metric? 224
12.7 Gravitational radiation as a probe 230
Contents

References

13 Primordial black holes
 Bernard Carr

13.1 Preface
13.2 Historical overview
13.3 PBHs as a probe of primordial inhomogeneities
13.4 PBHs as a probe of cosmological phase transitions
13.5 PBHs as a probe of a varying gravitational constant
13.6 PBHs as a probe of gravitational collapse
13.7 PBHs as a probe of high energy physics
13.8 Postscript

References

14 Black hole pair creation
 Simon Ross

14.1 Introduction
14.2 Constructing instantons: the C metric
14.3 Calculation of the action
14.4 Pair creation rate

References

15 Black holes at accelerators
 Steve Giddings

15.1 Introduction
15.2 TeV-scale gravity
15.3 Black holes on brane worlds
15.4 Black hole decay and signatures
15.5 The future of high energy physics

References

Part 4 Hawking radiation

16 Black holes and string theory
 Malcolm Perry

References

17 M theory and black hole quantum mechanics
 Joe Polchinski

17.1 A story
17.2 ‘Finding Stephen’s mistake’
17.3 The strong interaction and black holes

References
References

308

18 Playing with black strings

Gary Horowitz

- Introduction
- Existence of new (vacuum) solutions
- Properties of the new solutions
- New charged black strings
- Open questions
- Conclusions

References

328

19 Twenty years of debate with Stephen

Leonard Susskind

- Crisis and paradigm shift
- Stephen’s argument for coherence loss
- Horizon Complementarity
- The Holographic Principle
- The ultraviolet/infrared connection
- Counting black hole microstates
- De Sitter space
- Correlations in finite entropy systems

References

345

Part 5 Quantum gravity

349

20 Euclidean quantum gravity: the view from 2002

Gary Gibbons

- Introduction
- Some historical recollections
- The path integral
- The AdS/CFT correspondence
- The volume canonical ensemble
- Hyperbolic 4-manifolds
- Action and complexity
- Euclides ab omni naevo vindicatus?

References

370

21 Zeta functions, anomalies and stable branes

Ian Moss

- Introduction

373
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.2</td>
<td>ζ-functions</td>
<td>374</td>
</tr>
<tr>
<td>21.3</td>
<td>Heat kernel coefficients</td>
<td>375</td>
</tr>
<tr>
<td>21.4</td>
<td>Anomalies</td>
<td>377</td>
</tr>
<tr>
<td>21.5</td>
<td>Brane worlds</td>
<td>378</td>
</tr>
<tr>
<td>21.6</td>
<td>Outlook</td>
<td>381</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>382</td>
</tr>
<tr>
<td>22</td>
<td>Some reflections on the status of conventional quantum theory when applied to quantum gravity</td>
<td>384</td>
</tr>
<tr>
<td></td>
<td>Chris Isham</td>
<td></td>
</tr>
<tr>
<td>22.1</td>
<td>Introduction</td>
<td>384</td>
</tr>
<tr>
<td>22.2</td>
<td>The danger of a priori assumptions</td>
<td>386</td>
</tr>
<tr>
<td>22.3</td>
<td>Alternative conceptions of spacetime</td>
<td>393</td>
</tr>
<tr>
<td>22.4</td>
<td>Presheaves and related notions from topos theory</td>
<td>396</td>
</tr>
<tr>
<td>22.5</td>
<td>Presheaves of propositions, and valuations in quantum theory</td>
<td>401</td>
</tr>
<tr>
<td>22.6</td>
<td>Conclusions</td>
<td>405</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>406</td>
</tr>
<tr>
<td>23</td>
<td>Quantum geometry and its ramifications</td>
<td>409</td>
</tr>
<tr>
<td></td>
<td>Abhay Ashtekar</td>
<td></td>
</tr>
<tr>
<td>23.1</td>
<td>Introduction</td>
<td>409</td>
</tr>
<tr>
<td>23.2</td>
<td>A bird’s eye view of loop quantum gravity</td>
<td>411</td>
</tr>
<tr>
<td>23.3</td>
<td>Applications of quantum geometry</td>
<td>420</td>
</tr>
<tr>
<td>23.4</td>
<td>Outlook</td>
<td>428</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>431</td>
</tr>
<tr>
<td>24</td>
<td>Topology change in quantum gravity</td>
<td>436</td>
</tr>
<tr>
<td></td>
<td>Fay Dowker</td>
<td></td>
</tr>
<tr>
<td>24.1</td>
<td>Introduction</td>
<td>436</td>
</tr>
<tr>
<td>24.2</td>
<td>A top down framework for topology change</td>
<td>437</td>
</tr>
<tr>
<td>24.3</td>
<td>Morse metrics and elementary topology changes</td>
<td>439</td>
</tr>
<tr>
<td>24.4</td>
<td>Good and bad topology change</td>
<td>441</td>
</tr>
<tr>
<td>24.5</td>
<td>Progress on the Borde–Sorkin conjecture</td>
<td>443</td>
</tr>
<tr>
<td>24.6</td>
<td>Looking to the future</td>
<td>445</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>449</td>
</tr>
<tr>
<td>25</td>
<td>The past and future of string theory</td>
<td>455</td>
</tr>
<tr>
<td></td>
<td>Edward Witten</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>String theory</td>
<td></td>
</tr>
</tbody>
</table>

Part 6 M theory and beyond

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>The past and future of string theory</td>
<td>455</td>
</tr>
<tr>
<td>26</td>
<td>String theory</td>
<td></td>
</tr>
</tbody>
</table>
Contents

David Gross

26.1 Motivations for quantum gravity 463
26.2 The achievements of string theory 466
26.3 The future of string theory 470

27 A brief description of string theory

Michael Green

27.1 Introduction 473
27.2 Historical background 474
27.3 String theory today 477
27.4 Duality and M theory 481
27.5 Future perspective 482

28 The story of M

Paul Townsend

28.1 Introduction 484
28.2 The supermembrane 485
28.3 Backgrounds of reduced holonomy 488
28.4 The sigma model limit 490

References 492

29 Gauged supergravity and holographic field theory

Nick Warner

29.1 Gauged supergravity and a thesis project 494
29.2 The ups and downs of maximal gauged supergravity 496
29.3 Exploring higher dimensions 498
29.4 Holographic field theory and AdS/CFT correspondence 501
29.5 Bulk gravity and brane renormalization: where are the branes? 503
29.6 Holographic renormalization group flows: an example 506
29.7 Final comments 511

References 512

30 57 Varieties in a NUTshell

Chris Pope

30.1 Introduction 515
30.2 Four-dimensional self-dual metrics 516
30.3 Non-compact self-dual 4-metrics 517
30.4 Compact self-dual 4-metrics: K3 521
30.5 Special holonomy in higher dimensions 524
30.6 Ricci-flat Kähler 6-metrics and the conifold 525
30.7 Seven-dimensional metrics of G_2 holonomy 528
30.8 Spin(7) holonomy 532
30.9 Conclusion 533
References 534

Part 7 De Sitter space 537

31 Adventures in de Sitter space
Raphael Bousso 539
31.1 Introduction 539
31.2 De Sitter space 541
31.3 Entropy and temperature of event horizons 543
31.4 Entropy bounds from horizons 545
31.5 Absolute entropy bounds in spacetimes with $\Lambda > 0$ 548
31.6 Quantum gravity in de Sitter space 555
31.7 Instabilities of the Nariai solution 559

32 De Sitter space in non-critical string theory
Andrew Strominger with Alexander Maloney and Eva Silverstein 570
32.1 Introduction 570
32.2 De Sitter compactifications of super-critical string theory 573
32.3 Metastability of the De Sitter vacuum 580
References 589

33 Supergravity, M theory and cosmology
Renata Kallosh 592
33.1 Introduction 592
33.2 Extended supergravities with dS vacua 596
33.3 Hybrid inflation with D-branes 599
33.4 M theory on a four-fold with G-fluxes 606
References 609

Part 8 Quantum cosmology 613

34 The state of the universe
James Hartle 615
34.1 Introduction 615
34.2 Final theories 616
34.3 Effective theories 617
34.4 Directions 619
References 620
35 Quantum cosmology

Don Page

35.1 Motivation for a quantum state of the cosmos 621
35.2 The Hartle-Hawking proposal for the quantum state 622
35.3 Zero-loop quantum cosmology and FRW-scalar models 624
35.4 Real classical solutions for the FRW-scalar model 627
35.5 Complex classical solutions for the FRW-scalar model 629
35.6 FRW-scalar models with an exponential potential 632
35.7 Summary 646
References 647

36 Quantum cosmology and eternal inflation

Alexander Vilenkin

36.1 Introduction 649
36.2 Quantum cosmology 650
36.3 The tunnelling wave function 651
36.4 Alternative proposals for the wave function 655
36.5 Semiclassical probabilities 657
36.6 Comparing different wave functions 658
36.7 Do we need quantum cosmology? 660
36.8 Is quantum cosmology testable? 661
References 663

37 Probability in the deterministic theory known as quantum mechanics

Bryce DeWitt

37.1 Quantum measurement 667
37.2 Reality 668
37.3 Signalling by permutations 669
37.4 Equal likelihood 671
37.5 The case of degeneracy 672
37.6 Unequal probabilities 673

38 The interpretation of quantum cosmology and the problem of time

Jonathan Halliwell

38.1 Introduction 675
38.2 The classical case 678
38.3 The decoherent histories approach to quantum theory 684
38.4 The induced inner product 685
38.5 The class operators 686
38.6 Decoherence and the decoherence functional 688
39 What local supersymmetry can do for quantum cosmology
Peter D’Eath

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>39.1 Introduction</td>
<td>693</td>
</tr>
<tr>
<td>39.2 No-boundary state</td>
<td>698</td>
</tr>
<tr>
<td>39.3 The classical Riemannian boundary-value problem</td>
<td>699</td>
</tr>
<tr>
<td>39.4 Self-duality</td>
<td>703</td>
</tr>
<tr>
<td>39.5 Canonical quantum theory of N=1 supergravity: ‘traditional variables’</td>
<td>709</td>
</tr>
<tr>
<td>39.6 Canonical quantization of N=1 supergravity: Ashtekar–Jacobson variables</td>
<td>715</td>
</tr>
<tr>
<td>39.7 Comments</td>
<td>717</td>
</tr>
</tbody>
</table>

References 717

Part 9 Cosmology

40 Inflation and cosmological perturbations
Alan Guth

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>40.1 The origin of inflationary fluctuations</td>
<td>725</td>
</tr>
<tr>
<td>40.2 The 1982 Nuffield workshop</td>
<td>729</td>
</tr>
<tr>
<td>40.3 Observational evidence for inflation</td>
<td>735</td>
</tr>
<tr>
<td>40.4 Eternal inflation</td>
<td>740</td>
</tr>
<tr>
<td>40.5 A new singularity theorem</td>
<td>743</td>
</tr>
<tr>
<td>40.6 The origin of the universe</td>
<td>750</td>
</tr>
</tbody>
</table>

References 750

41 The future of cosmology: observational and computational prospects
Paul Shellard

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>41.1 Empirical cosmology</td>
<td>755</td>
</tr>
<tr>
<td>41.2 The cosmic microwave sky</td>
<td>756</td>
</tr>
<tr>
<td>41.3 Cosmological perturbations and cosmic concordance?</td>
<td>761</td>
</tr>
<tr>
<td>41.4 Critical observational tests</td>
<td>769</td>
</tr>
<tr>
<td>41.5 Primordial gravitational waves</td>
<td>772</td>
</tr>
<tr>
<td>41.6 Computational prospects</td>
<td>773</td>
</tr>
<tr>
<td>41.7 Afterword</td>
<td>776</td>
</tr>
</tbody>
</table>

References 777
Contents

42 **The ekpyrotic universe and its cyclic extension**
Neil Turok
781

42.1 Introduction
781
42.2 Homage to the Ancients
783
42.3 The ekpyrotic universe model
784
42.4 The main problem
786
42.5 Flatness
788
42.6 Density perturbations
788
42.7 Brane collisions
790
42.8 The inter-brane potential
793
42.9 The cyclic universe
793
42.10 Back to the singularity
794
42.11 Conclusions
798

References
798

43 **Inflationary theory versus the ekpyrotic/cyclic scenario**
Andrei Linde
801

43.1 Introduction
801
43.2 Chaotic inflation
803
43.3 Hybrid inflation
806
43.4 Quantum fluctuations and density perturbations
807
43.5 From the Big Bang to eternal inflation
809
43.6 Inflation and observations
811
43.7 Alternatives to inflation?
812
43.8 Ekpyrosis
814
43.9 Cyclic universe
819
43.10 Conclusions
830

References
833

44 **Brane (new) worlds**
Pierre Binétruy
839

44.1 Why study brane cosmology?
839
44.2 Life on the brane
841
44.3 AdS/CFT correspondence
845
44.4 Moduli fields. Moduli space approximation
846
44.5 Cosmological constant
848
44.6 Bulk scalars
851
44.7 Infinite dimensions
853
44.8 Open problems
855

References
856

45 **Publications of Stephen Hawking**
860

Index
873