Ergodic Theory via Joinings

Eli Glasner
Contents

Introduction 1

Part 1. General Group Actions 11

Chapter 1. Topological Dynamics 13
1. Topological transitivity, minimality 13
2. Equicontinuity and distality 18
3. Proximality and weak mixing 22
4. The enveloping semigroup 28
5. Pointed systems and their corresponding algebras 32
6. Ellis’ joint continuity theorem 33
7. Furstenberg’s distal structure theorem 34
8. Almost equicontinuity 34
9. Weak almost periodicity 38
10. The unique invariant mean on WAP functions 42
11. Van der Waerden’s theorem 46
12. Notes 47

Chapter 2. Dynamical Systems on Lebesgue Spaces 49
1. Lebesgue spaces 49
2. Dynamical systems and their factors 53
3. The automorphism group and some basic constructions 56
4. Poincaré’s recurrence theorem 58
5. Notes 59

Chapter 3. Ergodicity and Mixing Properties 61
1. Unitary representations 62
2. The Koopman representation 67
3. Rohlin’s skew-product theorem 69
4. The ergodic decomposition 71
5. Group and homogeneous skew-products 72
6. Amenable groups 79
7. Ergodicity and weak mixing for Z-systems 80
8. The pointwise ergodic theorem 83
9. Mixing and the Kolmogorov property for Z-systems 86
10. Stationary stochastic processes and dynamical systems 89
11. Gaussian dynamical systems 90
12. Weak mixing of Gaussian systems 91
13. Notes 93
Chapter 4. Invariant Measures on Topological Systems
1. Invariant probability measures
2. Generic points
3. Unique ergodicity
4. Examples of strictly ergodic systems
5. Minimal Heisenberg nil-systems are strictly ergodic
6. The geodesic and horocycle flows
7. E-systems
8. Notes

Chapter 5. Spectral Theory
1. The spectral theorem for a unitary operator
2. The spectral invariants of a dynamical system
3. The spectral type of a K-system
4. Irreducible Koopman representations
5. Notes

Chapter 6. Joinings
1. Joinings of two systems
2. Composition of joinings and the semigroup of Markov operators
3. Group extensions and Veech's theorem
4. A joining characterization of homogeneous skew-products
5. Finite type joinings
6. Disjointness and the relative independence theorem
7. Joinings and spectrum
8. Notes

Chapter 7. Some Applications of Joinings
1. The Halmos-von Neumann theorem
2. A joining characterization of mixing
3. Mixing of all orders of horocycle flows
4. α-weak mixing
5. Rudolph's counterexamples machine
6. Notes

Chapter 8. Quasifactors
1. Factors and quasifactors
2. A proof of the ergodic decomposition theorem
3. The order of orthogonality of a quasifactor
4. The de Finetti-Hewitt-Savage theorem
5. Quasifactors and infinite order symmetric selfjoinings
6. Joining quasifactors
7. The symmetric product quasifactors
8. A weakly mixing system with a non-weakly mixing quasifactor
9. Notes

Chapter 9. Isometric and Weakly Mixing Extensions
1. $L^2(X)$ as a direct integral of the Hilbert bundle $\hat{f}(Y)$
2. Generalized eigenfunctions and isometric extensions
3. The Hilbert-Schmidt bundle
4. The Y-eigenfunctions of a relative product 190
5. Weakly mixing extensions 192
6. Notes 193

Chapter 10. The Furstenberg-Zimmer Structure Theorem 195
1. I-extensions 196
2. Separating sieves, distal and I-extensions 197
3. The structure theorem 201
4. Factors and quasifactors of distal extensions 203
5. Notes 204

Chapter 11. Host's Theorem 205
1. Pairwise independent joinings 205
2. Mandrekar-Nadkarni's theorem 207
3. Proof of the purity theorem 209
4. Mixing systems of singular type are mixing of all orders 212
5. Notes 213

Chapter 12. Simple Systems and Their Self-Joinings 215
1. Group systems 216
2. Factors of simple systems 216
3. Joinings of simple systems I 218
4. JQFs of simple systems 220
5. Joinings of simple systems II 221
6. Pairwise independent joinings of simple Z-systems 223
7. Simplicity of higher orders 226
8. About 2-simple but not 3-simple systems 228
9. Notes 229

Chapter 13. Kazhdan's Property and the Geometry of \(M_{\mathbb{F}}(X) \) 231
1. Strong ergodicity and property \(T \) 232
2. A theorem of Bekka and Valette 235
3. A topological characterization of property \(T \) 240
4. The Bauer Poulsen dichotomy 241
5. A characterization of the Haagerup property 243
6. Notes 244

Part 2. Entropy Theory for \(\mathbb{Z} \)-systems 245

Chapter 14. Entropy 247
1. Topological entropy 249
2. Measure entropy 254
3. Applications of the martingale convergence theorem 260
4. Kolmogorov-Sinai theorem 263
5. Shannon-McMillan-Breiman theorem 264
6. Examples 266
7. Notes 267

Chapter 15. Symbolic Representations 269
1. Symbolic systems 269
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>Kakutani, Rohlin and K-R towers</td>
<td>271</td>
</tr>
<tr>
<td>3.</td>
<td>Partitions and symbolic representations</td>
<td>273</td>
</tr>
<tr>
<td>4.</td>
<td>(α, ϵ, N)-generic points</td>
<td>277</td>
</tr>
<tr>
<td>5.</td>
<td>An ergodic theorem for towers</td>
<td>279</td>
</tr>
<tr>
<td>6.</td>
<td>A SMB theorem for towers</td>
<td>281</td>
</tr>
<tr>
<td>7.</td>
<td>The d-metric</td>
<td>283</td>
</tr>
<tr>
<td>8.</td>
<td>The Jewett-Krieger theorem</td>
<td>291</td>
</tr>
<tr>
<td>9.</td>
<td>Notes</td>
<td>296</td>
</tr>
<tr>
<td></td>
<td>Chapter 16. Constructions</td>
<td>299</td>
</tr>
<tr>
<td>1.</td>
<td>Rank one systems</td>
<td>299</td>
</tr>
<tr>
<td>2.</td>
<td>Chacón's transformation</td>
<td>301</td>
</tr>
<tr>
<td>3.</td>
<td>A rank one α-weakly mixing system</td>
<td>302</td>
</tr>
<tr>
<td>4.</td>
<td>Notes</td>
<td>305</td>
</tr>
<tr>
<td></td>
<td>Chapter 17. The Relation Between Measure and Topological Entropy</td>
<td>307</td>
</tr>
<tr>
<td>1.</td>
<td>The variational principle</td>
<td>307</td>
</tr>
<tr>
<td>2.</td>
<td>A combinatorial lemma</td>
<td>310</td>
</tr>
<tr>
<td>3.</td>
<td>A variational principle for open covers</td>
<td>312</td>
</tr>
<tr>
<td>4.</td>
<td>An application to expansive systems</td>
<td>315</td>
</tr>
<tr>
<td>5.</td>
<td>Entropy capacity</td>
<td>316</td>
</tr>
<tr>
<td>6.</td>
<td>Notes</td>
<td>317</td>
</tr>
<tr>
<td></td>
<td>Chapter 18. The Pinsker Algebra, CPE and Zero Entropy Systems</td>
<td>319</td>
</tr>
<tr>
<td>1.</td>
<td>The Pinsker algebra</td>
<td>319</td>
</tr>
<tr>
<td>2.</td>
<td>The Rohlin-Sinai theorem</td>
<td>322</td>
</tr>
<tr>
<td>3.</td>
<td>Zero entropy</td>
<td>325</td>
</tr>
<tr>
<td>4.</td>
<td>Notes</td>
<td>327</td>
</tr>
<tr>
<td></td>
<td>Chapter 19. Entropy Pairs</td>
<td>329</td>
</tr>
<tr>
<td>1.</td>
<td>Topological entropy pairs</td>
<td>330</td>
</tr>
<tr>
<td>2.</td>
<td>Measure entropy pairs</td>
<td>332</td>
</tr>
<tr>
<td>3.</td>
<td>A measure entropy pair is an entropy pair</td>
<td>334</td>
</tr>
<tr>
<td>4.</td>
<td>A characterization of E_μ</td>
<td>336</td>
</tr>
<tr>
<td>5.</td>
<td>A measure μ with $E_\mu = E_X$</td>
<td>337</td>
</tr>
<tr>
<td>6.</td>
<td>Entropy pairs and the ergodic decomposition</td>
<td>338</td>
</tr>
<tr>
<td>7.</td>
<td>Measure entropy pairs and factors</td>
<td>340</td>
</tr>
<tr>
<td>8.</td>
<td>Topological Pinsker factors</td>
<td>341</td>
</tr>
<tr>
<td>9.</td>
<td>The entropy pairs of a product system</td>
<td>342</td>
</tr>
<tr>
<td>10.</td>
<td>An application to the proximal relation</td>
<td>344</td>
</tr>
<tr>
<td>11.</td>
<td>Notes</td>
<td>345</td>
</tr>
<tr>
<td></td>
<td>Chapter 20. Krieger’s and Ornstein’s Theorems</td>
<td>347</td>
</tr>
<tr>
<td>1.</td>
<td>Ornstein’s fundamental lemma</td>
<td>347</td>
</tr>
<tr>
<td>2.</td>
<td>Krieger’s finite generator theorem</td>
<td>352</td>
</tr>
<tr>
<td>3.</td>
<td>Finitely determined processes</td>
<td>354</td>
</tr>
<tr>
<td>4.</td>
<td>Bernoulli processes are finitely determined</td>
<td>357</td>
</tr>
<tr>
<td>5.</td>
<td>Sinai’s factor theorem and Ornstein’s isomorphism theorem</td>
<td>360</td>
</tr>
<tr>
<td>6.</td>
<td>Notes</td>
<td>361</td>
</tr>
</tbody>
</table>
CONTENTS

Appendix A. Prerequisite Background and Theorems 363
Bibliography 369
Index of Symbols 379
Index of Terms 381