Representation and Invariance of Scientific Structures

Patrick Suppes
Contents

Preface xiii

1 Introduction 1

1.1 General Viewpoint 1

1.2 What Is a Scientific Theory? 2
 The traditional sketch. 2
 Models versus empirical interpretations of theories. 3
 Intrinsic-versus-extrinsic characterization of theories. 5
 Coordinating definitions and the hierarchy of theories. 7
 Instrumental view of theories. 8

1.3 Plan of the Book 10

1.4 How To Read This Book 14

2 Axiomatic Definition of Theories 17

2.1 Meaning of Model in Science 17
 Comments on quotations. 20

2.2 Theories with Standard Formalization 24
 Example: ordinal measurement. 25
 Axiomatically built theories. 26
 Difficulties of scientific formalization. 27
 Useful example of formalization 28

2.3 Theories Defined by Set-theoretical Predicates 30
 Example: theory of groups. 31
 Meaning of 'set-theoretical predicate'. 32
 Set theory and the sciences. 33
 Basic structures. 33
 Reservations about set theory. 34

2.4 Historical Perspective on the Axiomatic Method 35
 Before Euclid. 35
Euclid. 36
Archimedes. 37
Euclid's Optics. 40
Ptolemy's Almagest. 41
Jordanus de Nemore. 43
Newton. 44
Modern geometry. 45
Hilbert and Frege. 47
Physics. 48

3 Theory of Isomorphic Representation 51

3.1 Kinds of Representation 51
Definitions as representations. 53

3.2 Isomorphism of Models 54

3.3 Representation Theorems 57
Homomorphism of models. 58
Embedding of models. 62

3.4 Representation of Elementary Measurement Structures 63
Extensive measurement. 63
Difference measurement. 66
Bisection measurement. 67
Conjoint measurement. 69
Proofs of Theorems 2–4 70

3.5 Machine Representation of Partial Recursive Functions 74
Unlimited register machines (URM). 76
Partial recursive functions over an arbitrary finite alphabet. 80

3.6 Philosophical Views of Mental Representations 81
Aristotle. 81
Descartes. 83
Hume. 83
Kant. 86
James. 88
Special case of images. 92
Psychological views of imagery. 93

4 Invariance 97

4.1 Invariance, Symmetry and Meaning 97
Meaning. 102
Objective meaning in physics. 103

4.2 Invariance of Qualitative Visual Perceptions 105
Oriented physical space. 106
CONTENTS

4.3 Invariance in Theories of Measurement 110
 Second fundamental problem of measurement: invariance theorem. 112
 Classification of scales of measurement. 114

4.4 Why the Fundamental Equations of Physical Theories Are Not
 Invariant 120
 Beyond symmetry. 122
 Covariants. 122

4.5 Entropy as a Complete Invariant in Ergodic Theory 123
 Isomorphism of ergodic processes. 125

5 Representations of Probability 129

5.1 The Formal Theory 130
 Primitive notions. 130
 Language of events. 132
 Algebras of events. 133
 Axioms of probability. 134
 Discrete probability densities. 136
 Conditional probability. 138
 Independence. 144
 Random variables. 146
 Joint distributions. 153
 Modal aspects of probability. 154
 Probabilistic invariance. 155

5.2 Classical Definition of Probability 157
 Laplace. 159
 Classical paradoxes. 163
 Historical note on Laplace’s principles 3–10. 166

5.3 Relative-frequency Theory for Infinite Random Sequences 167
 Von Mises. 171
 Church. 173

5.4 Random Finite Sequences 178
 Kolmogorov complexity. 179
 Universal probability. 182
 Relative frequencies as estimates of probability. 183

5.5 Logical Theory of Probability 184
 Keynes. 184
 Jeffreys. 185
 Carnap’s confirmation theory. 190
 Hintikka’s two-parameter theory. 198
 Kyburg. 200
 Model-theoretic approach. 200
 Chuaqui. 200
5.6 Propensity Representations of Probability 202
Propensity to decay. 203
Discrete qualitative densities. 210
Propensity to respond. 211
Propensity for heads. 214
Propensity for randomness in motion of three bodies. 218
Some further remarks on propensity. 220

5.7 Theory of Subjective Probability 225
De Finetti's qualitative axioms. 226
General qualitative axioms. 230
Qualitative conditional probability. 234
Historical background on qualitative axioms. 238
De Finetti's representation theorem. 240
Defense of objective priors. 241
General issues. 242
Decisions and the measurement of subjective probability. 245
Inexact measurement of belief: upper and lower probabilities. 248

5.8 Epilogue: Pragmatism about Probability 256
Early statistical mechanics. 256
Quantum mechanics. 257
Pragmatism in physics. 261
Statistical practice. 262

6 Representations of Space and Time 265
6.1 Geometric Preliminaries 266
6.2 Classical Space-time 269
Historical remarks. 272
6.3 Axioms for Special Relativity 275
Historical remarks. 278
Later qualitative axiomatic approaches. 281
6.4 How to Decide if Visual Space is Euclidean 282
The hierarchy of geometries. 287
6.5 The Nature of Visual Space: Experimental and Philosophical Answers 288
6.6 Partial Axioms for the Foley and Wagner Experiments 297
6.7 Three Conceptual Problems About Visual Space 300
Contextual geometry. 300
Distance perception and motion. 301
Objects of visual space. 302
6.8 Finitism in Geometry 303
Quantifier-free axioms and constructions. 305
7 Representations in Mechanics 313
7.1 Classical Particle Mechanics 313
Assumed mathematical concepts. 313
Space-time structure. 318
Primitive notions. 319
The axioms. 320
Two theorems—one on determinism. 323
Momentum and angular momentum. 325
Laws of conservation. 327
7.2 Representation Theorems for Hidden Variables in Quantum Mechanics 332
Factorization. 333
Locality. 335
GHZ-type experiments. 338
Second-order Gaussian theorems. 342
7.3 Weak and Strong Reversibility of Causal Processes 343
Weak reversibility. 344
Strong reversibility. 346
Ehrenfest model. 348
Deterministic systems. 349
8 Representations of Language 353
8.1 Hierarchy of Formal Languages 354
Types of grammars. 356
Normal forms. 357
Operations on languages. 359
Unsolvable problems. 360
Natural-language applications. 361
8.2 Representation Theorems for Grammars 361
Finite automata. 361
Languages accepted by finite automata. 364
Regular grammars and finite automata. 367
Remark on the empty sequence. 371
Pushdown automata and context-free languages. 371
Turing machines and linear bounded automata. 373
8.3 Stimulus-response Representation of Finite Automata 374
Stimulus-response theory. 377
Representation of finite automata. 380
Response to criticisms. 387
Another misconception: restriction to finite automata. 394
Axioms for register learning models. 397
Role of hierarchies and more determinate reinforcement. 401

8.4 Representation of Linear Models of Learning by Stimulus-sampling Models 403
Modification of general axioms. 404
Preliminary theorems. 405
Theorems involving the sequence ω_n. 411
Limit assumptions. 414

8.5 Robotic Machine Learning of Comprehension Grammars for Ten Languages 419
Problem of denotation. 420
Background cognitive and perceptual assumptions. 421
Internal language. 424
General learning axioms. 425
Specialization of certain axioms and initial conditions. 429
The Corpora. 432
Empirical results. 433
Grammatical rules. 438
Related work and unsolved problems. 441

8.6 Language and the Brain. 442
Some historical background. 442
Observing the brain's activity. 444
Methods of data analysis. 446
Three experimental results. 450
Criticisms of results and response. 453
Computation of extreme statistics. 456
Analysis of earlier studies. 458
Other pairs in the first experiment with 48 sentences. 461
Test of a timing hypothesis for the experiment with 100 sentences. 461
Censoring data in the visual-image experiment. 463

8.7 Epilogue: Representation and Reduction in Science 465

Summary Table of Representation and Invariance Theorems by Chapter 471

References 475

Author Index 503

Index 511