Contents

Preface

1 Introduction 1

2 Magnetohydrodynamics 10

2.1 MHD equations 11

2.1.1 Dynamic equations 11

2.1.2 The rotating reference frame 15

2.2 Incompressibility and the Boussinesq approximation 16

2.3 Conservation laws 20

2.3.1 Fluid invariants 20

2.3.2 Magnetic invariants 22

2.4 Equilibrium configurations 25

2.5 Linear waves 27

2.5.1 Waves in a homogeneous magnetized system 28

2.5.2 Waves in a stratified system 30

2.6 Elsässer fields and Alfvén time normalization 31

3 Transition to turbulence 33

3.1 Singularities of the ideal equations 34

3.1.1 FTS in the Euler equations 35

3.1.2 Formation of current sheets in ideal MHD 39

3.2 Instabilities 44

3.2.1 Kelvin–Helmholtz instability 45

3.2.2 Rayleigh–Taylor instability 51

3.2.3 Kelvin–Helmholtz instability in a stratified medium 56

3.2.4 The tearing instability 57

4 Macroscopic turbulence theory 65

4.1 One-point closure 66

4.1.1 Reynolds equations for MHD 67

4.1.2 Turbulent transport coefficients 68
4.1.3 Large-eddy simulations of MHD turbulence 70
4.1.4 Mean-field electrodynamics 72
4.2 Self-organization processes 75
 4.2.1 Selective decay 75
 4.2.2 The Alfvén effect and dynamic alignment 77
 4.2.3 Energy-decay laws 79
5 Spectral properties and phenomenology 86
 5.1 Homogeneous isotropic turbulence 87
 5.2 Ideal systems and turbulent cascades 89
 5.2.1 Absolute equilibrium states 90
 5.2.2 Cascade directions 92
 5.3 Spectra in dissipative MHD turbulence 93
 5.3.1 Magnetic Reynolds numbers 93
 5.3.2 Phenomenology of the inertial-range spectrum 95
 5.3.3 Anisotropy of MHD turbulence 100
 5.3.4 Dissipation scales 102
 5.3.5 Energy spectra in highly aligned turbulence 104
 5.3.6 Results of numerical simulations 107
6 Two-point-closure theory 113
 6.1 Quasi-normal-type approximations 114
 6.1.1 The problem of closure 114
 6.1.2 The quasi-normal approximation 116
 6.1.3 The eddy-damped quasi-normal Markovian approximation (EDQNM) 117
 6.2 The EDQNM theory of MHD turbulence 119
 6.2.1 Helical turbulence 120
 6.2.2 Correlated turbulence 125
 6.3 Shortcomings of closure approximations 129
7 Intermittency 131
 7.1 Self-similarity versus intermittency 133
 7.2 Structure functions 137
 7.2.1 Scaling exponents 138
 7.2.2 Extended self-similarity (ESS) 140
 7.2.3 The refined similarity hypothesis 142
 7.3 Exact turbulence relations 144
 7.3.1 Kolmogorov’s four-fifths law 144
 7.3.2 Yaglom’s four-thirds law 146
 7.3.3 The four-thirds law in MHD turbulence 148
Contents

10.2.3 Dissipation of turbulence 230
10.2.4 Compressive fluctuations 231

11 Turbulence in accretion disks 233
11.1 Basic properties of accretion disks 234
11.2 The standard disk model 238
11.2.1 Keplerian disks 238
11.2.2 The α-disk model 242
11.3 Hydrodynamic stability of accretion disks 244
11.3.1 Shear-flow stability of a Keplerian disk 245
11.3.2 Effects of convective turbulence 247
11.4 Magnetorotational instability 248
11.4.1 Linear instability 249
11.4.2 Nonlinear saturation and magnetoviscosity 252

12 Interstellar turbulence 256
12.1 The main properties of the interstellar medium 257
12.2 Observational results on molecular clouds 259
12.2.1 Supersonic turbulence 260
12.2.2 Gravity in molecular clouds 261
12.2.3 The density spectrum and mass distribution 262
12.2.4 Magnetic fields 264
12.3 Stability of molecular clouds 267
12.3.1 The virial theorem 268
12.3.2 Ambipolar diffusion 272
12.3.3 Generation of turbulence in molecular clouds 273

References 277
Index 293