Contents

Preface xvii

I CONCEPTUAL BASES OF EXPERIMENTAL DESIGN AND ANALYSIS

1 The Logic of Experimental Design 3
 The Traditional View of Science 3
 Responses to the Criticisms of the Idea of Pure Science 5
 Assumptions 5
 Modern Philosophy of Science 10
 Threats to the Validity of Inferences from Experiments 22
 Types of Validity 23
 Conceptualizing and Controlling for Threats to Validity 30
 Exercises 32

2 Introduction to the Fisher Tradition 34
 “Interpretation and its Reasoned Basis” 35
 A Discrete Probability Example 37
 Randomization Test 41
 Of Hypotheses and p Values: Fisher Versus Neyman–Pearson 47
 Toward Tests Based on Distributional Assumptions 49
 Statistical Tests with Convenience Samples 49
 The Assumption of Normality 50
 Overview of Experimental Designs to be Considered 56
 Exercises 59

II MODEL COMPARISONS FOR BETWEEN-SUBJECTS DESIGNS

3 Introduction to Model Comparisons: One-Way
 Between-Subjects Designs 67
 The General Linear Model 69
 One-Group Situation 71
 Basics of Models 71
 Proof That Ȳ Is the Least-Squares Estimate of μ (Optional) 73
 Development of the General Form of the Test Statistic 75
 Numerical Example 78
 Relationship of Models and Hypotheses 80
 Two-Group Situation 80
 Development in Terms of Models 80
Alternative Development and Identification with Traditional Terminology 83
Tests of Replication (Optional) 85
The General Case of One-Way Designs 88
Formulation in Terms of Models 88
Numerical Example 91
A Model in Terms of Effects 93
On Tests of Significance and Measures of Effect 98
Measures of Effect 100
Measures of Effect Size 101
Measures of Association Strength 104
Alternative Representations of Effects 107
Statistical Assumptions 110
Implications for Expected Values 110
Robustness of ANOVA 111
Checking for Normality and Homogeneity of Variance 114
Transformations 117
Power of the F Test: One-Way ANOVA 120
Determining Sample Size Using d and Table 3.10 123
Pilot Data and Observed Power 124
Exercises 126

Extension: Robust Methods for One-Way Between-Subject Designs 129
Parametric Modifications 131
Nonparametric Approaches 136
Choosing Between Parametric and Nonparametric Tests 137
Two Other Approaches (Optional) 143
Why Does the Usual F Test Falter with Unequal ns When Population
Variances Are Unequal? (Optional) 145
Exercises 147

4 Individual Comparisons of Means 149
A Model Comparison Approach for Testing Individual Comparisons 150
Preview of Individual Comparisons 150
Relationship to Model Comparisons 150
Derivation of Parameter Estimates and Sum of Squared Errors (Optional) 152
Expression of F Statistic 153
Numerical Example 155
Complex Comparisons 157
Models Perspective 157
Numerical Example 162
The t Test Formulation of Hypothesis Testing for Contrasts 163
Practical Implications 164
Unequal Population Variances 165
Numerical Example 168
Measures of Effect 169
Measures of Effect Size 170
Measures of Association Strength 173
Testing More Than One Contrast 177
How Many Contrasts Should Be Tested? 177
Linear Independence of Contrasts 178
Orthogonality of Contrasts 179
<table>
<thead>
<tr>
<th>Example of Correlation Between Nonorthogonal Contrasts (Optional)</th>
<th>180</th>
</tr>
</thead>
<tbody>
<tr>
<td>Another Look at Nonorthogonal Contrasts: Venn Diagrams</td>
<td>182</td>
</tr>
<tr>
<td>Exercises</td>
<td>186</td>
</tr>
<tr>
<td>Extension: Derivation of Sum of Squares for a Contrast</td>
<td>190</td>
</tr>
</tbody>
</table>

5 **Testing Several Contrasts: The Multiple-Comparison Problem**
- Multiple Comparisons 193
 - Experimentwise and Per-Comparison Error Rates 193
 - Simultaneous Confidence Intervals 196
 - Levels of Strength of Inference 197
 - Types of Contrasts 198
 - Overview of Techniques 199
 - Planned Versus Post Hoc Contrasts 200
 - Multiple Planned Comparisons 201
 - Bonferroni Adjustment 202
 - Modification of the Bonferroni Approach With Unequal Variances 205
 - Numerical Example 206
 - Pairwise Comparisons 208
 - Tukey's WSD Procedure 210
 - Modifications of Tukey's WSD 212
 - Numerical Example 213
 - Post Hoc Complex Comparisons 213
 - Proof That $SS_{max} = SS_B$ 215
 - Comparison of Scheffé to Bonferroni and Tukey 217
 - Modifications of Scheffé's Method 218
 - Numerical Example 219
 - Other Multiple-Comparison Procedures 221
 - Dunnett's Procedure for Comparisons with a Control 221
 - Numerical Example 222
 - Procedures for Comparisons with the Best 223
 - Numerical Example 227
 - Fisher's LSD (Protected t) 229
 - False Discovery Rate 230
 - Choosing an Appropriate Procedure 234
| Exercises | 237 |

6 **Trend Analysis**
- Quantitative Factors 243
- Statistical Treatment of Trend Analysis 244
 - The Slope Parameter 246
 - Numerical Example 248
 - Hypothesis Test of Slope Parameter 249
 - Confidence Interval and Other Effect Size Measures for Slope Parameter 251
 - Numerical Example 251
 - Testing for Nonlinearity 254
 - Numerical Example 257
 - Testing Individual Higher Order Trends 257
 - Contrast Coefficients for Higher Order Trends 259
 - Numerical Example 260
Further Examination of Nonlinear Trends 263
Trend Analysis with Unequal Sample Sizes 267
Concluding Comments 269
Exercises 269

7 Two-Way Between-Subjects Factorial Designs 275
The 2 × 2 Design 275
The Concept of Interaction 277
Additional Perspectives on the Interaction 278
A Model Comparison Approach to the General Two-Factor Design 280
Alternate Form of Full Model 280
Comparison of Models for Hypothesis Testing 284
Numerical Example 290
Familywise Control of Alpha Level 291
Measures of Effect 291
Follow-Up Tests 297
Further Investigation of Main Effects 297
Marginal Mean Comparisons Without Homogeneity Assumption 300
(Optional)
Further Investigation of an Interaction—Simple Effects 301
An Alternative Method for Investigating an Interaction—Interaction
Contrasts 309
Statistical Power 317
Advantages of Factorial Designs 319
Nonorthogonal Designs 320
Design Considerations 321
Relationship Between Design and Analysis 321
Analysis of the 2 × 2 Nonorthogonal Design 322
Test of the Interaction 322
Unweighted Marginal Means and Type III Sum of Squares 324
Unweighted Versus Weighted Marginal Means 325
Type II Sum of Squares 327
Summary of Three Types of Sum of Squares 328
Analysis of the General a × b Nonorthogonal Design 329
Test of the Interaction 329
Test of Unweighted Marginal Means 330
Test of Marginal Means in an Additive Model 331
Test of Weighted Marginal Means 332
Summary of Types of Sum of Squares 333
Which Type of Sum of Squares Is Best? 334
A Note on Statistical Packages for Analyzing Nonorthogonal Designs 335
Numerical Example 337
Final Remarks 343
Exercises 343

8 Higher Order Between-Subjects Factorial Designs 354
The 2 × 2 × 2 Design 354
The Meaning of Main Effects 355
The Meaning of Two-Way Interactions 356
The Meaning of the Three-Way Interaction .. 357
Graphical Depiction .. 359
Further Consideration of the Three-Way Interaction 361
Summary of Meaning of Effects ... 366
The General $A \times B \times C$ Design ... 367
The Full Model ... 367
Formulation of Restricted Models .. 368
Numerical Example .. 372
Implications of a Three-Way Interaction .. 374
General Guideline for Analyzing Effects .. 376
Summary of Results ... 381
Graphical Depiction of Data ... 382
Confidence Intervals for Single Degree of Freedom Effects 383
Other Questions of Potential Interest ... 386
Tests to Be Performed When the Three-Way Interaction Is Nonsignificant 387
Nonorthogonal Designs .. 389
Higher Order Designs ... 391
Exercises .. 392

9 Designs With Covariates: ANCOVA and Blocking 399
ANCOVA .. 401
The Logic of ANCOVA .. 401
Linear Models for ANCOVA .. 403
Two Consequences of Using ANCOVA ... 414
Assumptions in ANCOVA ... 420
Numerical Example .. 428
Measures of Effect ... 431
Comparisons Among Adjusted Group Means .. 434
Generalizations of the ANCOVA Model .. 438
Choosing Covariates in Randomized Designs .. 439
Sample Size Planning and Power Analysis in ANCOVA 441
Alternate Methods of Analyzing Designs with Concomitant Variables 443
ANOVA of Residuals .. 444
Gain Scores ... 444
Blocking .. 448
Exercises .. 453
Extension: Heterogeneity of Regression .. 456
Test for Heterogeneity of Regression ... 456
Accommodating Heterogeneity of Regression .. 460

10 Designs with Random or Nested Factors ... 469
Designs with Random Factors .. 469
Introduction to Random Effects .. 469
One-Factor Case .. 471
Two-Factor Case .. 474
Numerical Example .. 481
Alternative Tests and Design Considerations with Random Factors 483
Follow-up Tests and Confidence Intervals .. 484
Measures of Association Strength 485
Using Statistical Computer Programs to Analyze Designs with Random Factors 489
Determining Power in Designs with Random Factors 490
Designs with Nested Factors 494
Introduction to Nested Factors 494
Example 499
Models and Tests 499
Degrees of Freedom 504
Statistical Assumptions and Related Issues 506
Follow-up Tests and Confidence Intervals 507
Strength of Association in Nested Designs 508
Using Statistical Computer Programs to Analyze Nested Designs 509
Selection of Error Terms When Nested Factors Are Present 510
Complications That Arise in More Complex Designs 512
Exercises 517

III MODEL COMPARISONS FOR DESIGNS INVOLVING WITHIN-SUBJECTS FACTORS

11 One-Way Within-Subjects Designs: Univariate Approach 525
Prototypical Within-Subjects Designs 525
Advantages of Within-Subjects Designs 527
Analysis of Repeated Measures Designs with Two Levels 527
The Problem of Correlated Errors 527
Reformulation of Model 529
Analysis of Within-Subjects Designs with More Than Two Levels 531
Traditional Univariate (Mixed-Model) Approach 532
Comparison of Full and Restricted Models 533
Estimation of Parameters: Numerical Example 534
Assumptions in the Traditional Univariate (Mixed-Model) Approach 539
Homogeneity, Sphericity, and Compound Symmetry 540
Numerical Example 541
Adjusted Univariate Tests 542
Lower-Bound Adjustment 543
$\hat{\epsilon}$ Adjustment 543
$\bar{\epsilon}$ Adjustment 544
Summary of Four Mixed-Model Approaches 545
Measures of Effect 547
Comparisons Among Individual Means 550
Confidence Intervals for Comparisons 551
Confidence Intervals with Pooled and Separate Variances (Optional) 553
Considerations in Designing Within-Subjects Experiments 555
Order Effects 556
Differential Carryover Effects 556
Controlling for Order Effects with More Than Two Levels: Latin Square Designs 557
<table>
<thead>
<tr>
<th>Relative Advantages of Between-Subjects and Within-Subjects Designs</th>
<th>561</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intraclass Correlations for Assessing Reliability</td>
<td>563</td>
</tr>
<tr>
<td>Exercises</td>
<td>567</td>
</tr>
</tbody>
</table>

12 Higher-Order Designs with Within-Subjects Factors:

Univariate Approach

- Designs with Two Within-Subjects Factors
 - Omnibus Tests
 - Numerical Example
 - Further Investigation of Main Effects
 - Further Investigation of an Interaction—Simple Effects
 - Interaction Contrasts
 - Statistical Packages and Pooled Error Terms Versus Separate
 Error Terms
 - Assumptions
 - Adjusted Univariate Tests
 - Confidence Intervals
 - Quasi-F Ratios

- One Within-Subjects Factor and One Between-Subjects Factor
 - in the Same Design
 - Omnibus Tests
 - Further Investigation of Main Effects
 - Further Investigation of an Interaction—Simple Effects
 - Interaction Contrasts
 - Assumptions
 - Adjusted Univariate Tests

- More Complex Designs
 - Designs with Additional Factors
 - Latin Square Designs

| Exercises | 616 |

13 One-Way Within-Subjects Designs: Multivariate Approach

- A Brief Review of Analysis for Designs with Two Levels
- Multivariate Analysis of Within-Subjects Designs with Three Levels
 - Need for Multiple D Variables
 - Full and Restricted Models
 - The Relationship Between D_1 and D_2
 - Matrix Formulation and Determinants
 - Test Statistic

- Multivariate Analysis of Within-Subjects Designs with a Levels
 - Forming D Variables
 - Test Statistic
 - Numerical Example

<table>
<thead>
<tr>
<th>Measures of Effect</th>
<th>638</th>
</tr>
</thead>
<tbody>
<tr>
<td>Choosing an Appropriate Sample Size</td>
<td>639</td>
</tr>
<tr>
<td>Choice of D Variables</td>
<td>645</td>
</tr>
<tr>
<td>Tests of Individual Contrasts</td>
<td>647</td>
</tr>
<tr>
<td>Quantitative Repeated Factors (Optional)</td>
<td>649</td>
</tr>
</tbody>
</table>
Multiple-Comparison Procedures: Determination of Critical Values
- Planned Comparisons
- Pairwise Comparisons
- Post Hoc Complex Comparisons
- Finding D_{max} (Optional)
- Confidence Intervals for Contrasts

The Relationship Between the Multivariate Approach and the Mixed-Model Approach
- Orthonormal Contrasts
- Comparison of the Two Approaches
- Reconceptualization of e in Terms of $E^*(F)$ (Optional)

Multivariate and Mixed-Model Approaches for Testing Contrasts
- Numerical Example
- The Difference in Error Terms
- Which Error Term Is Better?

A General Comparison of the Multivariate and Mixed-Model Approaches
- Assumptions
- Tests of Contrasts
- Type I Error Rates
- Type II Error Rates
- Summary

Exercises

14 Higher Order Designs with Within-Subjects Factors: Multivariate Approach

Two Within-Subjects Factors, Each with Two Levels
- Formation of Main-Effect D Variables
- Formation of Interaction D Variables
- Relationship to the Mixed-Model Approach

Multivariate Analysis of Two-Way $a \times b$ Within-Subjects Designs
- Formation of Main-Effect D Variables
- Formation of Interaction D Variables
- Omnibus Tests—Multivariate Significance Tests

Measures of Effect
- Further Investigation of Main Effects
- Further Investigation of an Interaction—Simple Effects
- Interaction Contrasts

Confidence Intervals for Contrasts
- The Relationship Between the Multivariate and the Mixed-Model Approaches (Optional)

Multivariate and Mixed-Model Approaches for Testing Contrasts

Comparison of the Multivariate and Mixed-Model Approaches

One Within-Subjects Factor and One Between-Subjects Factor in the Same Design
- Split-Plot Design With Two Levels of the Repeated Factor
- General $a \times b$ Split-Plot Design

Measures of Effect
IV ALTERNATIVE ANALYSIS STRATEGIES

15 An Introduction to Multilevel Models for Within-Subjects Designs 763

Advantages of New Methods 763
Within-Subjects Designs 763
Overview of Remainder of Chapter 764

Within-Subjects Designs 765
Various Types of Within-Subjects Designs 765
Models for Longitudinal Data 765
Review of the ANOVA Mixed-Model Approach 766

Random Effects Models 767
Maximum Likelihood Approach 767
An Example of Maximum Likelihood Estimation (Optional) 768
Comparison of ANOVA and Maximum Likelihood Models 770
Numerical Example 773
A Closer Look at the Random Effects Model 778
Graphical Representation of Longitudinal Data 779
Graphical Representation of the Random Intercept Model 781
Coding Random Effects Predictor Variables 785
Random Effects Parameters 786
Numerical Example 788
Graphical Representation of a Model With Random Slope and Intercept 790
Further Consideration of Competing Models 791
Additional Models Deserving Consideration 793
Graphical Representation of a Growth Curve Model 798
Design Considerations 800

An Alternative to the Random Effects Model 802
Additional Covariance Matrix Structures 809
Tests of Contrasts 813
Overview of Broader Model Comparison 814

Complex Designs 816
Factorial Fixed Effects 817
Multiple Variables Measured Over Time 818
Unbalanced Designs 818
Conclusion 820
Exercises 820
16 An Introduction to Multilevel Hierarchical Mixed Models: Nested Designs
Review of the ANOVA Approach
Maximum Likelihood Analysis Models for the Simple Nested Design
 Numerical Example—Equal n
 Numerical Example—Unequal n
Maximum Likelihood Analysis Models for Complex Nested Designs
 Hierarchical Representation of the Model for a Simple Nested Design
 Models With Additional Level 2 Variables
 Models with Additional Level 1 Variables
Exercises

Appendixes
A Statistical Tables
B Part 1. Linear Models: The Relation Between ANOVA and Regression
 Part 2. A Brief Primer of Principles of Formulating and Comparing Models
C Notes
D Solutions to Selected Exercises
E References
 Name Index
 Subject Index