EXTREME ULTRAVIOLET ASTRONOMY

MARTIN A. BARSTOW
University of Leicester, UK

JAY B. HOLBERG
University of Arizona, Tucson, USA

CAMBRIDGE UNIVERSITY PRESS
Contents

Preface xiii
List of abbreviations xv

1 Introduction to the Extreme Ultraviolet: first source discoveries 1
 1.1 Astrophysical significance of the EUV 1
 1.2 The 'unobservable ultraviolet' 3
 1.3 Early detectors for the EUV 5
 1.4 Early experiments with sounding rockets 8
 1.5 EUV astronomy on the Apollo–Soyuz mission 9
 1.6 After Apollo–Soyuz 11
 1.7 Sources of EUV sky background 14

2 The first space observatories 17
 2.1 Introduction 17
 2.2 EUV emission processes 17
 2.3 Grazing incidence mirror technology 21
 2.4 Applications of grazing incidence technology in space 23
 2.5 Detector technology for space missions 27
 2.6 Thin film filters 34
 2.7 Selected scientific results from Einstein and EXOSAT 37
 2.8 Far-UV spectroscopy with IUE 50
 2.9 EUV and far-UV spectroscopy with Voyager 53

3 Roentgen Satellit: the first EUV sky survey 57
 3.1 Introduction 57
 3.2 The ROSAT mission 58
 3.3 The ROSAT Wide Field Camera 63
 3.4 Highlights from the WFC EUV sky survey 68
 3.5 The WFC EUV catalogues and the source population 73
 3.6 Properties of the white dwarf population 77
 3.7 Hidden white dwarfs in binary systems 87
 3.8 EUV emission from late-type stars 91
 3.9 The interstellar medium 109
Contents

4 The Extreme Ultraviolet Explorer and ALEXIS sky surveys 115
4.1 The Extreme Ultraviolet Explorer 115
4.2 The EUVE all-sky survey 123
4.3 Key EUVE survey results 128
4.4 The ALEXIS mission 145

5 Spectroscopic instrumentation and analysis techniques 155
5.1 The limitations of photometric techniques 155
5.2 The Extreme Ultraviolet Explorer spectrometer 155
5.3 Spectral analysis techniques 158
5.4 Theoretical spectral models 160
5.5 EUV spectroscopy with other instruments 170

6 Spectroscopy of stellar sources 173
6.1 Emission from B stars 173
6.2 ε Canis Majoris 174
6.3 Observations of β CMa 185
6.4 Coronal sources – the stellar zoo 187
6.5 Main sequence dwarfs (F–K) 191
6.6 Active systems 207
6.7 Contact and short period binaries 220
6.8 The effect of stellar activity on EUV spectra 221
6.9 Giants and the Hertzsprung gap 226
6.10 Physical models 227

7 Structure and ionisation of the local interstellar medium 233
7.1 A view of local interstellar space 233
7.2 Spectral observations of the diffuse background 233
7.3 Interstellar He II and autoionisation of He in the ISM 236
7.4 Interstellar absorption by hydrogen and helium 238
7.5 Interstellar absorption from lines of heavy elements 240
7.6 Measuring interstellar opacity with white dwarf spectra 241

8 Spectroscopy of white dwarfs 251
8.1 The importance of EUV spectra of white dwarfs 251
8.2 Measuring effective temperature from EUV continua 252
8.3 Photospheric helium in hot white dwarfs 256
8.4 Heavy elements in white dwarf photospheres 266
8.5 Hydrogen-deficient white dwarfs 291
8.6 White dwarfs in binary systems with B star companions 296

9 Cataclysmic variables and related objects 301
9.1 Emission mechanisms in CVs 301
9.2 Spectral modelling 303
9.3 EUVE spectroscopy of magnetic CVs 306
9.4 Non-magnetic CVs 311
Contents

9.5 Intermediate polars 312
9.6 Summary 315

10 Extragalactic photometry and spectroscopy 317
10.1 Active galaxies 317
10.2 Extragalactic source variability 321

11 EUV astronomy in the 21st century 325
11.1 Looking back 325
11.2 Limitations 326
11.3 New EUV science 326
11.4 Advanced instrumentation for EUV astronomy 331
11.5 Concluding remarks 335

Appendix. A merged catalogue of Extreme Ultraviolet sources 337
References 373
Index 387