A Problem-Solving Approach to Aquatic Chemistry

James N. Jensen
University at Buffalo
Table of Contents

Part I: Fundamental Concepts 1

Chapter 1: Getting Started with the Fundamental Concepts 3

1.1 Introduction 3
1.2 Why Calculate Chemical Species Concentrations? 3
1.3 Master Variables: The Importance of pH and pe 7
1.4 Properties of Water 8
1.5 Part I Road Map 9
1.6 Summary 10
1.7 Part I Case Study: Can Methylmercury Be Formed in Water? 10
Summary of Key Ideas 12

Chapter 2: Concentration Units 13

2.1 Introduction 13
2.2 Units Analysis 13
2.3 Molar Concentration Units 14
2.4 Mass Concentration Units 18
2.5 Dimensionless Concentration Units 21
2.6 Equivalents 22
2.7 Review of Units Interconversion 23
2.8 Common Concentration Units in the Gas Phase 23
2.9 Common Concentration Units in the Solid Phase 25
2.10 Activity 25
2.11 Summary 27
2.12 Part I Case Study: Can Methylmercury Be Formed in Water? 27
Summary of Key Ideas 28
Historical Note: Amadeo Avogadro and Avogadro’s Number 29
Problems 30

Chapter 3: Thermodynamic Basis of Equilibrium 33

3.1 Introduction 33
3.2 Thermodynamic Properties 34
3.3 Why Do We Need Thermodynamics to Calculate Species Concentrations? 37
3.4 Thermodynamic Laws 41
3.5 Gibbs Free Energy 44
3.6 Properties of Thermodynamic Functions 46
3.7 Changes in Thermodynamic Properties During Chemical Reactions 49
3.8 Relating Gibbs Free Energy to Species Concentrations 54
3.9 Chemical Equilibrium and the Equilibrium Constant 59
3.10 Summary 60
3.11 Part I Case Study: Can Methylmercury Be Formed in Water? 61
Summary of Key Ideas 62
Historical Note: Josiah Willard Gibbs 63
Problems 63
Chapter 4: Manipulating Equilibria 67
4.1 Introduction 67
4.2 Chemical and Mathematical Forms of Equilibrium 68
4.3 Units of Equilibrium Constants 70
4.4 Reversing Equilibria 72
4.5 Effects of Stoichiometry 73
4.6 Adding Equilibria 75
4.7 Creating Equilibria 76
4.8 Summary 82
4.9 Part I Case Study: Can Methylmercury Be Formed in Water? 82
Summary of Key Ideas 83
Historical Note: Henri-Louis Le Chatelier and Le Chatelier's Principle 84
Problems 85

Part II: Solution of Chemical Equilibrium Problems 87

Chapter 5: Getting Started with the Solution of Chemical Equilibrium Problems 89
5.1 Introduction 89
5.2 A Framework for Solving Equilibrium Problems 89
5.3 Introduction to Defining the Chemical System 91
5.4 Introduction to Enumerating Chemical Species 92
5.5 Introduction to Defining the Constraints on Species Concentrations 92
5.6 Road Map to Part II 94
5.7 Summary 95
5.8 Part II Case Study: Have You Had Your Zinc Today? 95
Summary of Key Ideas 96

Chapter 6: Setting Up Chemical Equilibrium Problems 97
6.1 Introduction 97
6.2 Defining the Chemical System 97
6.3 Enumerating Chemical Species 98
6.4 Defining Constraints on Species Concentrations 104
6.5 Review of Procedures for Setting Up Equilibrium Systems 111
6.6 Concise Mathematical Form for Equilibrium Systems: An Advanced Topic 112
6.7 Summary 113
6.8 Part II Case Study: Have You Had Your Zinc Today? 113
Summary of Key Ideas 117
Problems 117

Chapter 7: Algebraic Solution Techniques 121
7.1 Introduction 121
7.2 Background on Algebraic Solutions 121
7.3 Method of Substitution 123
7.4 Method of Approximation 126
7.5 Summary 133
7.6 Part II Case Study: Have You Had Your Zinc Today? 134
Summary of Key Ideas 137
Problems 138
Part VI: Beyond Dilute Systems at Equilibrium 459

Chapter 20: Getting Started with Beyond Dilute Systems at Equilibrium 461
 20.1 Introduction 461
 20.2 Extensions to Nonideal and Nonstandard Conditions 461
 20.3 Nonequilibrium Conditions 464
 20.4 Integrated Case Studies 465
 20.5 Part VI Road Map 465
 20.6 Summary 466
 Summary of Key Ideas 466

Chapter 21: Thermodynamics Revisited 467
 21.1 Introduction 467
 21.2 Effects of Ionic Strength 468
 21.3 Effects of Temperature on Chemical Equilibria 479
 21.4 Effects of Pressure on Equilibrium Constants 484
 21.5 Summary 486
 Summary of Key Ideas 487
 Historical Note: Jacobus Henricus Van’t Hoff 488
 Problems 488

Chapter 22: Chemical Kinetics of Aquatic Systems 491
 22.1 Introduction 491
 22.2 The Need for Chemical Kinetics 492
 22.3 Reaction Rates 494
 22.4 Common Rate Expressions 500
 22.5 More Complex Kinetic Forms 506
 22.6 Effects of Temperature and Ionic Strength on Reaction Kinetics 511
 22.7 Summary 514
 Summary of Key Ideas 515
 Problems 516

Chapter 23: Putting It All Together: Integrated Chemistry of Aquatic Systems 519
 23.1 Introduction 519
 23.2 Integrated Case Study 1: Metal Finishing 519
 23.3 Integrated Case Study 2: Oxidation of Ferrous Iron by Oxygen 524
 23.4 Integrated Case Study 3: Inorganic Mercury Chemistry in Natural Waters 529
 23.5 Summary 535

Appendices 537

Appendix A: Background Information 537
 A.1 Introduction 537
 A.2 Chemical Principles 537
 A.3 Mathematical Principles 540
 A.4 Computer Skills 540
 Summary of Key Ideas 542

Appendix B: Equilibrium and Steady State 543
 B.1 Introduction 543
 B.2 Steady-State Analysis 543