Problems in Operator Theory

Y. A. Abramovich
Indiana University-Purdue University Indianapolis

C. D. Aliprantis
Purdue University

Graduate Studies in Mathematics
Volume 51
Contents

Foreword xi

Chapter 1. Odds and Ends 1
§1.1. Banach Spaces, Operators, and Linear Functionals 1
§1.2. Banach Lattices and Positive Operators 20
§1.3. Bases in Banach Spaces 31
§1.4. Ultrapowers of Banach Spaces 44
§1.5. Vector-valued Functions 48
§1.6. Fundamentals of Measure Theory 51

Chapter 2. Basic Operator Theory 63
§2.1. Bounded Below Operators 63
§2.2. The Ascent and Descent of an Operator 68
§2.3. Banach Lattices with Order Continuous Norms 71
§2.4. Compact and Weakly Compact Positive Operators 78

Chapter 3. Operators on AL- and AM-spaces 87
§3.1. AL- and AM-spaces 87
§3.2. Complex Banach Lattices 96
§3.3. The Center of a Banach Lattice 105
§3.4. The Predual of a Principal Ideal 111

Chapter 4. Special Classes of Operators 119
§4.1. Finite-rank Operators 119
§4.2. Multiplication Operators 125
§4.3. Lattice and Algebraic Homomorphisms 129
§4.4. Fredholm Operators 134
§4.5. Strictly Singular Operators 139

Chapter 5. Integral Operators 145
§5.1. The Basics of Integral Operators 145
§5.2. Abstract Integral Operators 154
§5.3. Conditional Expectations and Positive Projections 169
§5.4. Positive Projections and Lattice-subspaces 180

Chapter 6. Spectral Properties 189
§6.1. The Spectrum of an Operator 189
§6.2. Special Points of the Spectrum 197
§6.3. The Resolvent of a Positive Operator 201
§6.4. Functional Calculus 205

Chapter 7. Some Special Spectra 215
§7.1. The Spectrum of a Compact Operator 215
§7.2. Turning Approximate Eigenvalues into Eigenvalues 222
§7.3. The Spectrum of a Lattice Homomorphism 230
§7.4. The Order Spectrum of an Order Bounded Operator 232
§7.5. The Essential Spectrum of a Bounded Operator 237

Chapter 8. Positive Matrices 243
§8.1. The Banach Lattices $M_n(\mathbb{R})$ and $M_n(\mathbb{C})$ 243
§8.2. Operators on Finite Dimensional Spaces 251
§8.3. Matrices with Non-negative Entries 262
§8.4. Irreducible Matrices 265
§8.5. The Perron-Frobenius Theorem 268

Chapter 9. Irreducible Operators 273
§9.1. Irreducible and Expanding Operators 273
§9.2. Ideal Irreducibility and the Spectral Radius 283
§9.3. Band Irreducibility and the Spectral Radius 290
§9.4. Krein Operators and $C(\Omega)$-spaces 293

Chapter 10. Invariant Subspaces 299
§10.1. A Smorgasbord of Invariant Subspaces 299
§10.2. The Lomonosov Invariant Subspace Theorem 307
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>§10.3.</td>
<td>Invariant Ideals for Positive Operators</td>
<td>310</td>
</tr>
<tr>
<td>§10.4.</td>
<td>Invariant Subspaces of Families of Positive Operators</td>
<td>317</td>
</tr>
<tr>
<td>§10.5.</td>
<td>Compact-friendly Operators</td>
<td>320</td>
</tr>
<tr>
<td>§10.6.</td>
<td>Positive Operators on Banach Spaces with Bases</td>
<td>329</td>
</tr>
<tr>
<td>§10.7.</td>
<td>Non-transitive Algebras</td>
<td>331</td>
</tr>
<tr>
<td></td>
<td>Chapter 11. The Daugavet Equation</td>
<td>335</td>
</tr>
<tr>
<td>§11.1.</td>
<td>The Daugavet Equation and Uniform Convexity</td>
<td>335</td>
</tr>
<tr>
<td>§11.2.</td>
<td>The Daugavet Property in (AL)- and (AM)-spaces</td>
<td>352</td>
</tr>
<tr>
<td>§11.3.</td>
<td>The Daugavet Property in Banach Spaces</td>
<td>356</td>
</tr>
<tr>
<td>§11.4.</td>
<td>The Daugavet Property in (C(\Omega))-spaces</td>
<td>359</td>
</tr>
<tr>
<td>§11.5.</td>
<td>Slices and the Daugavet Property</td>
<td>365</td>
</tr>
<tr>
<td>§11.6.</td>
<td>Narrow Operators</td>
<td>369</td>
</tr>
<tr>
<td>§11.7.</td>
<td>Some Applications of the Daugavet Equation</td>
<td>372</td>
</tr>
<tr>
<td></td>
<td>Bibliography</td>
<td>375</td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td>379</td>
</tr>
</tbody>
</table>