GEOMETRY OF LINEAR 2-NORMED SPACES

RAYMOND W. FREESE AND YEOL JE CHO

Nova Science Publishers, Inc.
New York
CONTENTS

PART I
BASIC PROPERTIES OF LINEAR 2–NORMED SPACES

CHAPTER 1
INTRODUCTION ... 1

CHAPTER 2
LINEAR 2–NORMED SPACES
2.1. Linear Spaces .. 5
2.2. 2–Norms and 2–Metrics ... 15
2.3. 2–Norms and Bivectors ... 17
2.4. Semi–2–Norms and Semi–2–Metrics 19
2.5. 2–Metrics in the Restricted Sense 23
2.6. Between Points and Midpoints 26
2.7. Properties (U) and (L) in Linear 2–Normed Spaces 31
2.8. Properties (U) and (L) in 2–Metric Spaces 33
2.9. Contributions to Non–Archimedean Functional Analysis 39

CHAPTER 3
2–BANACH SPACES
3.1. Elementary Properties .. 49
3.2. Bounded Linear 2–Functionals 57
3.3. More Extensions of Bounded Linear 2–Functionals 76
CHAPTER 4
COMPLETION OF LINEAR 2–NORMED SPACES

4.1. Elementary Properties ... 83
4.2. Completion of Linear 2–Normed Spaces 85
4.3. Relations between Banach Spaces and 2–Banach Spaces 91

CHAPTER 5
2–INNER PRODUCT SPACES

5.1. 2–Inner Products ... 95
5.2. Generating 2–Inner Products ... 103
5.3. Generalizations of 2–Inner Products 106
5.4. 2–Inner Product Spaces and Gâteaux Partial Derivatives 118

PART II
GEOMETRIC PROPERTIES OF LINEAR 2–NORMED SPACES

CHAPTER 6
STRICT CONVEXITY

6.1. Elementary Characterizations ... 121
6.2. Strict Convexity by Duality Mappings 126
6.3. Strict Convexity by p–Semi–Inner Products 133
6.4. Strict Convexity by Algebraic and 2–Norm Midpoints 140
6.5. Strict Convexity in Topological Vector Spaces 141
6.6. 2–Norms Generated by Semi–Norms on the Space of Bivectors . 151
CHAPTER 7

STRICT 2-CONVEXITY

7.1. Elementary Characterizations .. 159
7.2. Strict 2-Convexity by Algebraic and 2-Norm Midpoints 169
7.3. Strict 2-Convexity by \((\alpha, \beta, \gamma)\)-2-Norm and
 \((\alpha, \beta, \gamma)\)-Algebraic Interior Points 173
7.4. Strict 2-Convexity by Duality Mappings 182
7.5. Strict 2-Convexity by Extreme Points 185

CHAPTER 8

UNIFORM CONVEXITY

8.1. Elementary Characterizations .. 191
8.2. Uniform Convexity in Quotient Spaces 199
8.3. Uniform Convexity in 2-Inner Product Spaces 209
8.4. Uniform Convexity in the Space of Bivectors 210
8.5. Uniform 2-Convexity in Linear 2-Normed Spaces 212

CHAPTER 9

ISOMETRY CONDITIONS IN LINEAR 2-NORMED SPACES

9.1. Isometry Conditions .. 219
9.2. An Example of a Non-linear Isometry 228
9.3. Weak Conditions of Isometries .. 229
9.4. Non-expansive Mappings in Linear 2-Normed Spaces 235

CHAPTER 10

ORTHOGONALITY RELATIONS BETWEEN
THE NORMS AND 2-NORMS

10.1. Elementary Properties of Orthogonalities 241
10.2. Properties of Orthogonalities
 and The Characterization Theorem 248
10.3. The 2-Dimensional Case and Examples 250
CHAPTER 11

QUADRATIC FORMS ON MODULES

11.1. Generalized A–Quadratic Forms of Type (P) 265
11.2. Generalized A–Quadratic Forms of Type (Q) 270
11.3. Applications .. 275
11.4. Extensions to Linear 2–Normed Spaces 278

REFERENCES .. 283

SUBJECT INDEX .. 297