Spinning the Semantic Web

Bringing the World Wide Web to Its Full Potential

Edited by Dieter Fensel, James Hendler, Henry Lieberman, and Wolfgang Wahlster

The MIT Press
Cambridge, Massachusetts
London, England
Contents

Foreword xi
Tim Berners-Lee

1 The Original Dream xii
2 Re-enter Machines xiv
3 Where Are We Now? xiv
4 The World Wide Web Consortium xv
5 Where Is the Web Going Next? xvi

1 **Introduction** 1

Dieter Fensel, James Hendler, Henry Lieberman, and Wolfgang Wahlster

1.1 Why Is There a Need for the Semantic Web and What Will It Provide? 3
1.2 How the Semantic Web Will Be Possible 8

1 **Languages and Ontologies**

2 **SHOE: A Blueprint for the Semantic Web** 29

Jeff Heflin, James Hendler, and Sean Luke

2.1 Introduction 29
2.2 Background 31
2.3 The SHOE Language 36
2.4 Implementation 51
2.5 Related Work 57
2.6 Conclusion 58

3 DAML-ONT: An Ontology Language for the Semantic Web 65
 Deborah L. McGuinness, Richard Fikes, Lynn Andrea Stein, and
 James Hendler
 3.1 Introduction 65
 3.2 An Introduction through Examples 68
 3.3 Notes 77
 3.4 Language Extensions 78
 3.5 An Axiomatic Semantics of DAML-ONT 79
 3.6 Conclusion 90

4 Ontologies and Schema Languages on the Web 95
 Michel Klein, Jeen Broekstra, Dieter Fensel, Frank van Harmelen, and
 Ian Horrocks
 4.1 Introduction 95
 4.2 Ontologies and Schemas 96
 4.3 The Ontology Language OIL 98
 4.4 XML Schema 103
 4.5 RDF Schema 114
 4.6 Applying Ontologies to Online Resources 121
 4.7 Conclusion 135

5 UPML: The Language and Tool Support for Making the Semantic Web Alive 141
 Borys Omelayenko, Monica Crubezy, Dieter Fensel, Richard Benjamins,
 Bob Wielinga, Enrico Motta, Mark Musen, and Ying Ding
 5.1 Introduction 141
 5.2 Brokering Reasoning Components on the Web 144
8.3 The Domain 230
8.4 Enabling Infrastructure 233
8.5 Worked Example 244
8.6 Conclusion 250

9 Knowledge Mobility: Semantics for the Web as a White Knight for Knowledge-Based Systems 253
Yolanda Gil
9.1 Introduction 253
9.2 The Need for Knowledge Mobility 254
9.3 A New Generation of Knowledge Bases: Resilient Hyper-Knowledge Bases 268
9.4 TRELLIS: Building Resilient Hyper-Knowledge Bases 272
9.5 Conclusion 276

10 Complex Relationships for the Semantic Web 279
Sanjeev Thacker, Amit Sheth, and Shuchi Patel
10.1 Introduction 279
10.2 Knowledge Modeling 282
10.3 Information Scapes 296
10.4 Knowledge Discovery 298
10.5 Visual Interfaces 302
10.6 Related Work 310
10.7 Conclusion 312

11 SEmantic portAL: The SEAL Approach 317
Alexander Maedche, Steffen Staab, Nenad Stojanovic, Rudi Studer, and York Sure
11.1 Introduction 317
11.2 Ontologies and Knowledge Bases 318
11.3 Ontology Engineering 325
Contents

11.4 SEAL Infrastructure and Core Modules 332
11.5 Semantic Ranking 338
11.6 Semantic Personalization 344
11.7 RDF Outside: From a Semantic Web Site to the Semantic Web 347
11.8 Related Work 350
11.9 Conclusion 354

III Dynamic Aspect

12 Semantic Gadgets: Ubiquitous Computing Meets the Semantic Web 363
Ora Lassila and Mark Adler

12.1 Introduction 363
12.2 About Representation 364
12.3 Scenario: Semantic Gadget in a Museum 365
12.4 Semantic Discovery 368
12.5 Contracting for the Use of Services 369
12.6 Composition of Services 370
12.7 Museum Scenario Revisited: an Analysis 371
12.8 Conclusion 374

13 Static and Dynamic Semantics of the Web 377
Christopher Frye, Mike Plusch, and Henry Lieberman

13.1 Introduction 377
13.2 Static Semantics 378
13.3 Dynamic Semantics 380
13.4 Sources of Dynamic Semantics 381
13.5 Web Agents Make Use of Dynamic Semantics 382
13.6 Information Retrieval and Theorem-Proving Perspectives 384
13.7 The Semantic Web Should Not Sit on the Tower of Babel 387
13.8 We Need Another Language like a Hole in the Head 389
13.9 Is Procedural Attachment Rope to Hang Yourself? 390