CONTENTS

Preface v

Chapter 1 Introduction to Modelling Deformation and Fluid Flow of Fractured Rock 1
 1.1. Introduction 1
 1.2. Approaches to modelling rock systems 2
 1.3. Continuum models 4
 1.4. Flow models 6
 1.5. Discontinuum models 8
 1.6. Overview of UDEC 9
 1.7. Summary of numerical modelling 18

Chapter 2 Modelling of Simple Rock Blocks 23
 2.1. Introduction 23
 2.2. Basic components of natural fracture networks 23
 2.3. Model geometry and initial conditions 25
 2.4. Basic behaviour of deformation and fluid flow 25
 2.5. Effects of fracture geometry 31
 2.6. Effects of fracture properties 38
 2.7. Effects of applied boundary stresses 42
 2.8. Effects of rock deformation models 44
 2.9. Summary 48

Chapter 3 Evaluation of 2-Dimensional Permeability Tensors 53
 3.1. Introduction 53
 3.2. Calculation of components of flow-rates 54
 3.3. Permeability in naturally fractured rocks 59
 3.4. Geometrical effects on permeability 63
 3.5. Effects of stress on permeability 69
 3.6. Conclusions 80
 Appendix 3-A1: Input codes for example one 85
 Appendix 3-A2: Derivation of 2-D permeability tensor 87

Chapter 4 Scaling of 2-D Permeability Tensors 91
 4.1. Introduction 91
 4.2. Development of the previous approach 92
 4.3. Testing the concept of a representative element volume by down-scaling 94
 4.4. Scaling-up of permeability 99
 4.5. Effects of sample number and sample size 103
4.6. Determining the permeability of a region 108
4.7. Conclusions 112

Chapter 5 Percolation Behaviour of Fracture Networks 113
5.1. Introduction 113
5.2. Modelling of 2-dimensional fracture networks 113
5.3. Density, percolation threshold and fractal dimension 114
5.4. Critical behaviour of fractured rock masses 118
5.5. Conclusions 128

Chapter 6 Slip and Fluid Flow around An Extensional Fault 131
6.1. Introduction 131
6.2. Outline of modelling 131
6.3. Stress distribution and fluid flow in model A:
 At a shallow depth with a hydrostatic fluid pressure 136
6.4. Comparison of model A with a supra-hydrostatic
 fluid pressure at greater depth 143
6.5. Effects of irregularities in fault zone 147
6.6. Discussion of dynamic response of fluid-dilation interactions 150
6.7. Conclusions 152

Chapter 7 Instability and Associated Localization of Deformation and
Fluid Flow in Fractured Rocks 155
7.1. Introduction 155
7.2. Numerical determination of instability 156
7.3. Instability and R-ratio 159
7.4. Effects of fracture network geometry 165
7.5. Multifractal description of flow localisation 174
7.6. Permeability of three natural fracture networks
 before and at critical stress state 178
7.7. Effects of loading direction 181
7.8. Is the crust in a critical state? 183
7.9. Implications for mineral deposits 183
7.10. Conclusions 185

Chapter 8 Grain Scale Flow of Fluid in Fractured Rocks 187
8.1. Introduction 187
8.2. Simulation of Deformation and Fracturing in Matrix Models 188
8.3. Dual Permeability Model 189
8.4. Results 190
8.5. Discussion and Conclusions 208

Chapter 9 Changes of Permeability due to Excavation of Ship-Locks
 of the Three Gorges Project, China 211
9.1. Introduction 211
9.2. Estimation of permeability 214
9.3. Permeability before excavation 216