Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td></td>
<td>ix</td>
</tr>
<tr>
<td></td>
<td>Acknowledgments</td>
<td>xiii</td>
</tr>
<tr>
<td>1</td>
<td>Gaussian Elimination and Its Variants</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Matrix Multiplication</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Systems of Linear Equations</td>
<td>11</td>
</tr>
<tr>
<td>1.3</td>
<td>Triangular Systems</td>
<td>23</td>
</tr>
<tr>
<td>1.4</td>
<td>Positive Definite Systems; Cholesky Decomposition</td>
<td>32</td>
</tr>
<tr>
<td>1.5</td>
<td>Banded Positive Definite Systems</td>
<td>54</td>
</tr>
<tr>
<td>1.6</td>
<td>Sparse Positive Definite Systems</td>
<td>63</td>
</tr>
<tr>
<td>1.7</td>
<td>Gaussian Elimination and the LU Decomposition</td>
<td>70</td>
</tr>
<tr>
<td>1.8</td>
<td>Gaussian Elimination with Pivoting</td>
<td>93</td>
</tr>
<tr>
<td>1.9</td>
<td>Sparse Gaussian Elimination</td>
<td>106</td>
</tr>
<tr>
<td>2</td>
<td>Sensitivity of Linear Systems</td>
<td>111</td>
</tr>
<tr>
<td>2.1</td>
<td>Vector and Matrix Norms</td>
<td>112</td>
</tr>
<tr>
<td>2.2</td>
<td>Condition Numbers</td>
<td>120</td>
</tr>
</tbody>
</table>
CONTENTS

2.3 Perturbing the Coefficient Matrix 133
2.4 A Posteriori Error Analysis Using the Residual 137
2.5 Roundoff Errors; Backward Stability 139
2.6 Propagation of Roundoff Errors 148
2.7 Backward Error Analysis of Gaussian Elimination 157
2.8 Scaling 171
2.9 Componentwise Sensitivity Analysis 175

3 The Least Squares Problem 181
3.1 The Discrete Least Squares Problem 181
3.2 Orthogonal Matrices, Rotators, and Reflectors 185
3.3 Solution of the Least Squares Problem 212
3.4 The Gram-Schmidt Process 220
3.5 Geometric Approach 239
3.6 Updating the QR Decomposition 249

4 The Singular Value Decomposition 261
4.1 Introduction 262
4.2 Some Basic Applications of Singular Values 266
4.3 The SVD and the Least Squares Problem 275
4.4 Sensitivity of the Least Squares Problem 281

5 Eigenvalues and Eigenvectors I 289
5.1 Systems of Differential Equations 289
5.2 Basic Facts 305
5.3 The Power Method and Some Simple Extensions 314
5.4 Similarity Transforms 334
5.5 Reduction to Hessenberg and Tridiagonal Forms 349
5.6 The QR Algorithm 356
5.7 Implementation of the QR algorithm 372
5.8 Use of the QR Algorithm to Calculate Eigenvectors 392
5.9 The SVD Revisited 396
6 Eigenvalues and Eigenvectors II 413
6.1 Eigenspaces and Invariant Subspaces 413
6.2 Subspace Iteration, Simultaneous Iteration, and the QR Algorithm 420
6.3 Eigenvalues of Large, Sparse Matrices, I 433
6.4 Eigenvalues of Large, Sparse Matrices, II 451
6.5 Sensitivity of Eigenvalues and Eigenvectors 462
6.6 Methods for the Symmetric Eigenvalue Problem 476
6.7 The Generalized Eigenvalue Problem 502

7 Iterative Methods for Linear Systems 521
7.1 A Model Problem 521
7.2 The Classical Iterative Methods 530
7.3 Convergence of Iterative Methods 544
7.4 Descent Methods; Steepest Descent 559
7.5 Preconditioners 571
7.6 The Conjugate-Gradient Method 576
7.7 Derivation of the CG Algorithm 581
7.8 Convergence of the CG Algorithm 590
7.9 Indefinite and Nonsymmetric Problems 596

Appendix Some Sources of Software for Matrix Computations 603

References 605

Index 611

Index of MATLAB Terms 617