Distributions, Integral Transforms and Applications

Wladyslaw Kierat
and
Urszula Sztaba
CONTENTS

Preface vii

Chapter 1. Definitions and preliminaries 1
 1.1. The spaces \mathcal{D} and \mathcal{D}' 1
 1.2. Approximation lemmas 3
 1.3. Regularizations of functions 5
 1.4. Du Bois-Rymond's lemma 6
 1.5. Some density theorem 7
 1.6. Distributional convergence 8
 1.7. Algebraic operations on distributions 9
 1.8. Linear transformations in the space of the independent variables 10
 1.9. Differentiation of distributions 11
 1.10. Weak derivatives of locally integrable functions 12
 1.11. Local Sobolev spaces 16
 1.12. Sobolev spaces 19
 1.13. Differential equations of the second order with measures as coefficients 21

Chapter 2. Local properties of distributions 27
 2.1. Smooth partitions of unity 27
 2.2. Approximation of functions belonging to $W^{m,p}(\Omega)$ by smooth functions 29
 2.3. Restrictions of distributions 31
 2.4. Support of distributions 33
 2.5. Distributions of finite order 35
 2.6. Cartesian products of Banach spaces 37
 2.7. Some local representations of distributions 38

Chapter 3. Tensor products and convolution products 41
 3.1. Regularization of distributions 41
 3.2. A characterization of convolution operators 44
 3.3. Tensor product of distributions 45
 3.4. Differentiation and support of tensor product 47
 3.5. The theorem of kernels 48
 3.6. Connection between tensor product and convolution product of distributions 54
 3.7. Differentiation and support of convolution product 58

Chapter 4. Differential equations 59
 4.1. Fundamental solutions of differential equations 59
4.2. The Cauchy problem for the wave equation with distribution data 60
4.3. Fundamental solutions of the Laplace operator and the heat operator 63
4.4. The Hörmander inequalities 66
4.5. L^2-solvability 70
4.6. Regularity properties of differential operators 72

Chapter 5. Particular types of distributions and Cauchy transforms 75
5.1. Integrable distributions 75
5.2. Regularization of integrable distributions 77
5.3. Tensor product of integrable distributions 78
5.4. D_{L^p} and D'_{L^p} spaces 81
5.5. Convolution product 82
5.6. Cauchy transforms of integrable distributions 84
5.7. Cauchy transforms of distributions belonging to D'_{L^p} 87
5.8. Cauchy transforms of some distributions 91

Chapter 6. Tempered distributions and Fourier transforms 95
6.1. The spaces S and S' 95
6.2. Tensor product of tempered distributions 97
6.3. Fourier transforms of integrable functions 98
6.4. Formal properties of Fourier transforms 100
6.5. Fourier transforms of functions in S 102
6.6. Fourier transforms of functions in $L^2(\mathbb{R}^n)$ 103
6.7. Fourier transforms of the Hermite functions 107
6.8. Fourier transforms of tempered distributions 108
6.9. Formal properties of Fourier transforms of tempered distributions 109
6.10. Fourier transforms of integrable distributions 110
6.11. Fourier transforms of square integrable distributions 112
6.12. Determining Fourier transforms of square integrable distributions 114
6.13. Hilbert transforms 116
6.15. The Paleya–Wiener type theorems 119
6.16. The Cauchy semigroup 121
6.17. The Cauchy problem for the heat equation 123

Chapter 7. Orthogonal expansions of distributions 127
7.1. The Poisson summation formula 127
7.2. Periodic distributions 128
7.3. The spaces \mathcal{A} and \mathcal{A}' 131
7.4. Cauchy transforms of elements of \mathcal{A}' 134
7.5. The Wiener expansion of square integrable distributions 136

APPENDIX. Sequential completeness of some spaces 139

Subject index 143
Notes and references to the literature 145
Bibliography 147
Index of symbols 149