NANOPARTICLES AND THE ENVIRONMENT

Editors:

JILLIAN F. BANFIELD
Department of Geology & Geophysics
University of Wisconsin
Madison, Wisconsin

ALEXANDRA NAVROTSKY
Department of Chemical Engineering & Materials Science
University of California-Davis
Davis, California

COVER: Colorized, high-resolution transmission electron microscope lattice-fringe image of seven nanoparticles of UO$_2$ produced by the activity of sulfate-reducing bacteria. Note that the largest uraninite particle is <3 nm in diameter (Suzuki and Banfield, in preparation).

Graphic provided by Jill Banfield, Yohey Suzuki, and Mary Diman.

Series Editor for MSA: Paul H. Ribbe
Virginia Polytechnic Institute and State University
Blacksburg, Virginia

MINERALOGICAL SOCIETY OF AMERICA
Table of Contents

1 Nanoparticles in the Environment
Jillian F. Banfield, Hengzhong Zhang

INTRODUCTION .. 1
NANOPARTICLES IN NATURAL SYSTEMS: WHERE DO THEY COME FROM? 2
 Example: Predominantly inorganic nanoparticle formation in acid drainage 3
 Other inorganic pathways for formation of nanoparticles ... 5
NANOPARTICLE FORMATION VIA BIOLOGICAL PATHWAYS .. 6
 Example: Iron-oxidizing microbes and nanoparticle formation in AMD systems 6
 Example: Nanoparticles formed by microbes in anoxic regions of AMD systems 10
 Other examples of biological pathways that lead to nanoparticles in the environment 14
MICROBES, NANOPARTICLES, AND MINERALOGICAL BIOSIGNATURES 16
NANOPARTICLES: HOW AND WHY ARE THEY DIFFERENT? 16
 Introduction ... 16
 Surface free energy and surface stress ... 19
 Surface energy and particle size .. 20
 Surface “pressure” and structural responses in nanoparticles 21
THERMODYNAMICS OF NANOPARTICLE SYSTEMS ... 22
 Minimization of the total free energy by phase transformation 23
 Examples of phase stability in nanoparticle systems .. 29
 Particle size and surface adsorption ... 35
 Nanoparticles and organics .. 36
KINETICS IN NANOPARTICLE SYSTEMS ... 37
 Brief review of kinetic models for macroscopic solids .. 37
 Kinetics of amorphous-to-nanocrystalline transformations 38
 Kinetics of crystalline transformations involving nanoparticles 39
 Crystal growth of nanocrystalline particles .. 41
 Aggregation and nucleation .. 44
 Possible galvanic interactions in nanoparticle mixtures .. 46
 Microstructure development in nanocrystals ... 47
SOME RESEARCH OPPORTUNITIES AND CHALLENGES .. 48
ACKNOWLEDGMENTS .. 51
REFERENCES ... 51

2 Nanocrystals as Model Systems for Pressure-Induced Structural Phase Transitions
Keren Jacobs, A. Paul Alivisatos

INTRODUCTION .. 59
SINGLE-STRUCTURAL DOMAIN .. 60
SURFACE EFFECTS AND SHAPE CHANGE ... 62
THERMODYNAMIC SMEARING .. 62
TRANSFORMATION KINETICS: ACTIVATION VOLUME ... 65
TRANSFORMATION MECHANISM .. 68
 Activation volume ... 69
 Activation energy (enthalpic barrier) ... 70
 Entropic factor (entropic barrier) .. 70
TEMPERATURE DEPENDENCE ... 70
ACKNOWLEDGMENTS .. 71
REFERENCES ... 71
INTRODUCTION

THERMODYNAMIC ISSUES

METHODS FOR DETERMINING NANOPIRATE ENERGETICS

Equilibrium measurements

Calorimetric measurements

Computation, simulation, and modeling

SPECIFIC SYSTEMS

Aluminum oxides and oxyhydroxides

Iron oxides and oxyhydroxides

Manganese oxides

Titanium oxide

Zirconium oxide

Magnesium aluminate

Silica

Interfaces, dislocations, and nanocomposites

Mixed hydroxides and hydroxycarbonates: from surface adsorbates to nanoparticles to bulk phases

FUTURE DIRECTIONS AND UNANSWERED QUESTIONS

ACKNOWLEDGMENTS

REFERENCES

4 Structure, Aggregation and Characterization of Nanoparticles

Glenn A. Waychunas

INTRODUCTION

Structural aspects of natural nanomaterials

Definitions

GROWTH AND AGGREGATION PROCESSES

Growth processes

Inorganic vs. organic (enzymatic)

NUCLEATION AND GROWTH

Classical nucleation theory (CNT)

Homogeneous nucleation

Heterogeneous nucleation

PROBLEMS WITH CLASSICAL MODELS

Dynamical nucleation processes: Smoluchowski’s approach

Classical growth mechanisms vs. aggregation processes

Classical growth mechanisms and laws

Growth topologies

Inorganic vs. biologically produced crystallites

How do these growth considerations apply to nanoparticles and nanocrystals?

AGGREGATION MECHANISMS

Particle-particle interaction forces

Electrical double layer, Derjaguin approximation and DLVO theory

Aggregation kinetics and kernels in the Smoluchowski equation

Fractal dimensions of an aggregate

Aggregation topologies

Simulations and state of knowledge

STRUCTURE

Scales of structure

Surface vs. bulk structure
Aqueous Aluminum Polynuclear Complexes and Nanoclusters: A Review

William H. Casey, Brian L. Phillips, Gerhard Furrer