Fourier Transforms and Approximations

A.M. Sedletskii

Moscow State University, Russia
Translated from the Russian by E.V. Pankratiev

Gordon and Breach Science Publishers
Australia • Canada • France • Germany • India • Japan • Luxembourg
Malaysia • The Netherlands • Russia • Singapore • Switzerland
CONTENTS

Preface vii

Chapter 1. Notation and some preliminaries from analysis 1

1.1. General notation 1
1.2. Slowly varying functions 2
1.3. Systems in Banach spaces 4
1.4. Interpolation of linear operators 5
1.5. Fourier transforms 6
1.6. Hardy spaces H^p 7
1.7. Entire functions 8
Comments to Chapter 1 10

Chapter 2. Distribution of zeros of finite Fourier (Laplace) transforms 11

2.1. On zeros of finite Laplace transforms 11
2.2. On zeros of Fourier sine- and cosine-transforms 16
2.3. Bounds for zeros of the finite Laplace transforms 25
2.4. A condition for all the zeros of an entire function of exponential type to lie in a curvilinear half-plane 31
Comments and supplements to Chapter 2 39

Chapter 3. Estimates of Fourier and Laplace transforms and their applications 41

3.1. Asymptotic behaviour of finite Laplace transforms 41
3.2. Complex variants of the Abelian theorem for Laplace transforms 52
3.3. Decreasing finite Fourier transforms and their application to the approximation 55
3.4. Finite Fourier transforms without zeros in a neighbourhood of the real axis 60
Comments and supplements to Chapter 3 63

Chapter 4. Laplace transforms in the weight spaces L^p and their applications 65

4.1. Laplace transforms as operators in the spaces L^p_x 65
4.2. On completeness and non-minimality of a system of exponents in $L^p(-\pi, \pi)$ 69
Comments and supplements to Chapter 4 81

Chapter 5. Stability of classes of finite Fourier transforms and its application 83

5.1. The invariance of the class $\mathcal{F} L^2$ 83
5.2. The invariance of the class $\mathcal{F} L^9$ 95
5.3. Entire functions of Bernstein’s class that are not Fourier-Stieltjes transforms 101
5.4. Excesses of systems of exponents 111
Comments and supplements to Chapter 5 119
Chapter 6. Non-harmonic Fourier series (behaviour on the initial interval) 121
6.1. Formulae for partial sums 121
6.2. Non-harmonic Fourier series and the condition (A_p) 127
6.3. Equiconvergence and uniform convergence of non-harmonic Fourier series 137
Comments and supplements to Chapter 6 147

Chapter 7. Non-harmonic Fourier series (behaviour on the real line) 149
7.1. Extension of convergence of quasi-polynomials 149
7.2. Continuation of functions from the initial segment 161
7.3. Convergence and summability of non-harmonic Fourier series in the L^p-norm ($1 \leq p \leq \infty$) on every segment 164
7.4. Properties of the system $\exp(i(n + \beta \text{sgn } n)t))$ 171
Comments and supplements to Chapter 7 176

Chapter 8. The Müntz-Szasz problem 179
8.1. The case of real exponents and analysis of the problem in the spaces C and L^p, $p > 2$ 179
8.2. On zeros of analytic functions in a disk 187
8.3. Analysis of the problem in the weight spaces L^p 194
Comments and supplements to Chapter 8 210

Chapter 9. Fourier transforms of rapidly decreasing functions 211
9.1. Theorems of Pitt's type 211
9.2. Fourier transforms of rapidly decreasing functions on a half-line and on the line 218
Comments and supplements to Chapter 9 229

Chapter 10. Approximation by translates and exponents on the line 231
10.1. Dense families of translates of a function on a line 231
10.2. Approximative properties of weighted exponents on the whole line 245
Comments and supplements to Chapter 10 254

References 255

Index 261