Managing Water Well Deterioration

Robert McLaughlan
National Centre for Groundwater Management, University of Technology, Sydney, Australia

IAH-publication: International Contribution to Hydrogeology (ICH)
Volume 22
Contents

List of Figures ix

List of Tables x

Preface xi

Acknowledgements xiii

1 PROCESSES 1
 1.1 Fouling 1
 1.1.1 Biofouling 2
 1.1.2 Mineral Scaling 2
 1.1.3 Particulate Fouling 3
 1.2 Corrosion 5
 1.2.1 Metal 5
 1.2.2 Plastics 8

2 PROBLEMS IN DIFFERENT TYPES OF WELLS 9
 2.1 Water Supply Wells 9
 2.1.1 Fouling 9
 2.1.2 Corrosion 14
 2.2 Remediation Wells 17
 2.2.1 Monitoring Wells 18
 2.2.2 Recovery Wells 19
 2.2.3 Water Treatment Equipment 20
 2.3 Injection Wells 20

3 WELL MANAGEMENT 23
 3.1 Well Maintenance Strategies 24
 3.2 System Performance Indicators 24
 3.3 Evaluating Well Maintenance Components 25
 3.3.1 Costing Monitoring and Maintenance Activities 26
 3.3.2 Monitoring Costs 26
 3.3.3 Maintenance Costs 26
 3.3.4 Replacement Well Costs 27

4 DIAGNOSING WELL DETERIORATION 29
 4.1 Diagnosing Well Deterioration 29
 4.1.1 Water Yield Decrease 29
 4.1.2 Water Quality Decrease 30
Contents

4.2 Well Data Analysis
4.2.1 Pumping System 32
4.2.2 Well System 34
4.2.3 Aquifer System 37
4.2.4 Data Reliability 37
4.3 Water Sample Analysis 38
4.3.1 Water Quality Indicators 38
4.3.2 Fouling/Corrosion Predictors 39
4.4 Solid Sample Analysis 40
4.4.1 Visual 40
4.4.2 Odour 41
4.4.3 Acid Treatment 41
4.4.4 Loss on Ignition 41
4.4.5 Total Organic Carbon 42
4.4.6 X-Ray Florescence 42
4.4.7 X-Ray Diffraction 42
4.5 Microbial Sample Analysis 43
4.5.1 Examination 43
4.5.2 Culturing 43
4.5.3 Collection 44
4.6 Well Inspection 45
4.7 Corrosion Data Analysis 47
4.7.1 Coupon Weight-Loss Method 47
4.7.2 Electrochemical Rate Measurement 48

5 CONTROLLING WELL DETERIORATION 49
5.1 Evaluating Maintenance Options 49
5.2 Preventative Maintenance through Monitoring 50
5.2.1 Water Quality Records 50
5.2.2 Operational Records 51
5.2.3 Maintenance Records 51
5.2.4 Well Construction Records 51
5.3 Corrective Maintenance 52
5.3.1 Chemicals Treatment 53
5.3.2 Mechanical Treatment 55
5.3.3 In Situ Treatment 56
5.3.4 Well Decommissioning (Abandonment) 57
5.4 Operational Maintenance 58
5.4.1 Redwater Bypass 58
5.4.2 Pump Cycling 58
5.4.3 Pulsed Injection 58
5.4.4 Injected Concentration 58
5.5 Design-Out Maintenance 58
5.5.1 Flowmeters 59
5.5.2 Riser Pipe 59
5.5.3 Well Siting
5.5.4 Solids Minimisation
5.5.5 Screen Type
5.5.6 Well Design
5.5.7 Pump and Pipeline Design
5.5.8 Water Treatment Units
5.5.9 *In Situ* Aeration
5.5.10 Cathodic Protection
5.5.11 Protective Coatings
5.5.12 Material Selection for Corrosive Environments

6 CASE STUDIES
6.1 Cost–Benefit Analysis of Well Maintenance Strategies
6.2 Improved Water Quality through Site Investigation
6.3 Determination of Rehabilitation Needs through a Comprehensive Evaluation Programme
6.4 Borehole Deterioration in a Micaceous Aquifer
6.5 Microbially Enhanced Corrosion of Well Screens
6.6 Fouling Caused by Well Casing Corrosion
6.7 Aluminium Biofouling
6.8 Impact of Variations in Aquifer Hydrochemistry on Iron Biofouling
6.9 Aluminium Fouling Caused by the Mixing of Different Groundwater Chemistries
6.10 Fouling of Groundwater Treatment Recovery Wells
6.11 Well Treatment Using an *In Situ* Well Chlorinator to Reduce Iron Biofouling
6.12 Aquifer Overexploitation Linked to Increased Well Corrosion

APPENDICES

APPENDIX A: WATER CHEMISTRY BACKGROUND
A1 Iron Species
A2 Aluminium Species
A3 Inorganic Carbon Species
A4 Sulphur Species
A5 Manganese Species

APPENDIX B: WELL FOULING DEPOSIT COMPOSITION
B1 Organic
B2 Organo-mineral
 B2.1 Iron Biofouling
 B2.2 Aluminium Biofouling
B3 Mineral Scale
 B3.1 Carbonate
 B3.2 Sulphate
APPENDIX C: CORROSION BACKGROUND 97
C1 Electrode Reactions 97
 C1.1 Anode 97
 C1.2 Cathode 97
C2 Passivity 98
C3 Polarisation 98
C4 Concentration Cell Formation 98
C5 Galvanic Series 98
C6 Environmental Factors 100

APPENDIX D: FIELD CORROSION STUDY 103
D1 Methodology 103
 D1.1 Corrosion Device Details 103
 D1.2 Corrosion Coupons 103
 D1.3 Device Location Details 104
 D1.4 Device Installation 106
D2 Conclusions 106

APPENDIX E: SAMPLE COLLECTION 111
E1 Water Samples 111
E2 Solid Sample Collection 112

APPENDIX F: GLOSSARY 115

BIBLIOGRAPHY 119

REFERENCES 121

SUBJECT INDEX 127