CONTENTS

PART I

Elementary methods, differentiation, complex numbers

1 Standard functions and techniques

1.1 Real numbers, powers, inequalities 2
1.2 Coordinates in the plane 4
1.3 Graphs 5
1.4 Functions 8
1.5 Radian measure of angles 11
1.6 Trigonometric functions; properties 12
1.7 Inverse functions 16
1.8 Inverse trigonometric functions 18
1.9 Polar coordinates 21
1.10 Exponential functions; the number e 23
1.11 The logarithmic function 25
1.12 Exponential growth and decay 27
1.13 Hyperbolic functions 29
1.14 Partial fractions 31
1.15 Summation sign: geometric series 35
1.16 Infinite geometric series 37
1.17 Permutations and combinations 39
1.18 The binomial theorem 44

Problems 48

2 Differentiation

2.1 The slope of a graph 54
2.2 The derivative: notation and definition 57
2.3 Rates of change 58
2.4 Derivative of x^n ($n = 0, 1, 2, 3, \ldots$) 60
2.5 Derivatives of sums: multiplication by constants 62
2.6 Three important limits 63
2.7 Derivatives of $e^x, \sin x, \cos x, \ln x$ 65
2.8 A basic table of derivatives 67
2.9 Higher-order derivatives 68
2.10 An interpretation of the second derivative 70

Problems 71

3 Further techniques for differentiation

3.1 The product rule 73
3.2 Quotients and reciprocals 75
3.3 The chain rule 77
3.4 Derivative of x^n for any value of n 80
3.5 Functions of $ax + b$ 81
3.6 An extension of the chain rule 82
3.7 Logarithmic differentiation 82
PART II
Matrix algebra and vectors

7 Matrix algebra
7.1 Matrix definition and notation 144
7.2 Rules of matrix algebra 145
7.3 Special matrices 151
7.4 The inverse matrix 155
Problems 160

8 Determinants
8.1 The determinant of a square matrix 162
8.2 Properties of determinants 165
8.3 The adjoint and inverse matrices 170
Problems 172
9 Elementary operations with vectors
9.1 Displacement along an axis 175
9.2 Displacement vectors in two dimensions 177
9.3 Axes in three dimensions 179
9.4 Vectors in two and three dimensions 179
9.5 Relative velocity 183
9.6 Position vectors and vector equations 185
9.7 Unit vectors and basis vectors 189
9.8 Tangent vector, velocity, and acceleration 190
9.9 Motion in polar coordinates 192
Problems 193

10 The scalar product
10.1 The scalar product of two vectors 196
10.2 The angle between two vectors 197
10.3 Perpendicular vectors 198
10.4 Rotation of axes in two dimensions 200
10.5 Direction cosines 200
10.6 Rotation of axes in three dimensions 202
10.7 Direction ratios and coordinate geometry 204
10.8 Properties of a plane 205
10.9 General equation of a straight line 208
10.10 Forces acting at a point 209
10.11 Curvature in two dimensions 211
Problems 213

11 Vector product
11.1 Vector product 216
11.2 Nature of the vector $p = a \times b$ 217
11.3 The scalar triple product 220
11.4 Moment of a force 222
11.5 Vector triple product 225
Problems 226

12 Linear algebraic equations
12.1 Cramer's rule 229
12.2 Elementary row operations 232
12.3 The inverse matrix by Gaussian elimination 235
12.4 Compatible and incompatible sets of equations 236
12.5 Homogeneous sets of equations 240
12.6 Gauss–Seidel iterative method of solution 242
Problems 245

13 Eigenvalues and eigenvectors
13.1 Eigenvalues of a matrix 248
13.2 Eigenvectors 250
13.3 Linear dependence 254
13.4 Diagonalization of a matrix 256
Contents

PART III
Integration and differential equations

13.5 Powers of matrices 259
13.6 Quadratic forms 262
13.7 Positive-definite matrices 264
13.8 An application to a vibrating system 267
Problems 270

14 Antidifferentiation and area
14.1 Reversing differentiation 274
14.2 Constructing a table of antiderivatives 278
14.3 Signed area generated by a graph 280
Problems 282

15 The definite and indefinite integral
15.1 Signed area as the sum of strips 284
15.2 Numerical illustration of the sum formula 285
15.3 The definite integral and area 286
15.4 The indefinite-integral notation 287
15.5 Integrals unrelated to area 289
15.6 Improper integrals 291
15.7 Integration of complex functions: a new type of integral 293
15.8 The area analogy for a definite integral 295
15.9 Symmetric integrals 296
15.10 Definite integrals having variable limits 298
Problems 300

16 Applications involving the integral as a sum
16.1 Examples of integrals arising from a sum 302
16.2 Geometrical area in polar coordinates 304
16.3 The trapezium rule 305
16.4 Centre of mass, moment of inertia 307
Problems 311

17 Systematic techniques for integration
17.1 Substitution method for \(\int (ax + b) \, dx \) 314
17.2 Substitution method for \(\int (ax^2 + b) x \, dx \) 316
17.3 Substitution method for \(\int \cos^m ax \sin^n ax \, dx \) (m or n odd) 318
17.4 Definite integrals and change of variable 320
17.5 Occasional substitutions 321
17.6 Partial fractions for integration 323
17.7 Integration by parts 325
17.8 Integration by parts: definite integrals 328
17.9 Differentiating with respect to a parameter 331
Problems 332

18 Unforced linear differential equations with constant coefficients
18.1 Differential equations and their solutions 336
18.2 Solving first-order linear unforced equations 339
18.3 Solving second-order linear unforced equations 342
18.4 Complex roots of the characteristic equation 345
18.5 Initial conditions for second-order equations 348
Problems 349

19 Forced linear differential equations
19.1 Particular solutions for standard forcing terms 351
19.2 Harmonic forcing term by using complex solutions 355
19.3 Particular solutions: exceptional cases 358
19.4 The general solution of forced equations 360
19.5 First-order linear equations with a variable coefficient 363
Problems 366

20 Harmonic functions and the harmonic oscillator
20.1 Harmonic oscillations 368
20.2 Phase difference: lead and lag 370
20.3 Physical models of a differential equation 371
20.4 Free oscillations of a linear oscillator 372
20.5 Forced oscillations and transients 373
20.6 Resonance 376
20.7 Nearly linear systems 378
20.8 Stationary and travelling waves 380
20.9 Compound oscillations; beats 384
20.10 Travelling waves; beats 387
20.11 Dispersion; group velocity 388
20.12 The Doppler effect 390
Problems 391

21 Steady forced oscillations: phasors, impedance, transfer functions
21.1 Phasors 394
21.2 Algebra of phasors 396
21.3 Phasor diagrams 397
21.4 Phasors and complex impedance 398
21.5 Transfer functions in the frequency domain 402
21.6 Phasors and waves; complex amplitude 404
Problems 408

22 Graphical, numerical, and other aspects of first-order equations
22.1 Graphical features of first-order equations 410
22.2 The Euler method for numerical solution 412
22.3 Nonlinear equations of separable type 414
22.4 Differentials and the solution of first-order equations 417
22.5 Change of variable in a differential equation 421
Problems 424
23 Nonlinear differential equations and the phase plane

23.1 Autonomous second-order equations 429
23.2 Constructing a phase diagram for \((x, \dot{x})\) 430
23.3 \((x, \dot{x})\) phase diagrams for other linear equations; stability 433
23.4 The pendulum equation 436
23.5 The general phase plane 438
23.6 Approximate linearization 441
23.7 Limit cycles 442
23.8 A numerical method for phase paths 443
Problems 445

PART IV
Transforms and Fourier series

24 The Laplace transform

24.1 The Laplace transform 448
24.2 Laplace transforms of \(t^n, e^{zt}, \sin t, \cos t\) 449
24.3 Scale rule; shift rule; factors \(t^n\) and \(e^{zt}\) 451
24.4 Inverting a Laplace transform 455
24.5 Laplace transforms of derivatives 457
24.6 Application to differential equations 458
24.7 The unit function and the delay rule 461
Problems 465

25 Laplace and \(z\) transforms: applications

25.1 Division by \(s\) and integration 467
25.2 The impulse function 469
25.3 Impedance in the \(s\) domain 471
25.4 Transfer functions in the \(s\) domain 473
25.5 The convolution theorem 479
25.6 General response of a system from its impulsive response 481
25.7 Convolution integral in terms of memory 482
25.8 Discrete systems 483
25.9 The \(z\) transform 485
25.10 Behaviour of \(z\) transforms in the complex plane 490
25.11 \(z\) transforms and difference equations 494
Problems 496

26 Fourier series

26.1 The composition of vibrations 500
26.2 Fourier series for a periodic function 501
26.3 Integrals of periodic functions 502
26.4 Calculating the Fourier coefficients 504
26.5 Examples of Fourier series 506
26.6 Use of symmetry: sine and cosine series 509
26.7 Functions defined on a finite range: half-range series 511
26.8 Spectrum of a periodic function 513
26.9 Obtaining one Fourier series from another 514
26.10 The two-sided Fourier series 515
Problems 518
27 Fourier transforms
27.1 Sine and cosine transforms 522
27.2 The exponential Fourier transform 526
27.3 Short notations: alternative expressions 527
27.4 Fourier transforms of some basic functions 528
27.5 Rules for manipulating transforms 530
27.6 The delta function and periodic functions 533
27.7 Convolution theorem for Fourier transforms 535
27.8 The shah function 539
27.9 Energy in a signal: Rayleigh's theorem 540
27.10 Diffraction from a uniformly radiating strip 541
27.11 General source distribution and the inverse transform 545
27.12 Transforms in radiation problems 546
Problems 550

28 Differentiation of functions of two variables
28.1 Functions of more than one variable 553
28.2 Depiction of functions of two variables 554
28.3 Partial derivatives 556
28.4 Higher derivatives 559
28.5 Tangent plane and normal to a surface 562
28.6 Maxima, minima, and other stationary points 564
28.7 The method of least squares 567
28.8 Differentiating an integral with respect to a parameter 569
Problems 570

29 Functions of two variables: geometry and formulae
29.1 The incremental approximation 573
29.2 Small changes and errors 575
29.3 The derivative in any direction 578
29.4 Implicit differentiation 581
29.5 Normal to a curve 584
29.6 Gradient vector in two dimensions 585
Problems 588

30 Chain rules, restricted maxima, coordinate systems
30.1 Chain rule for a single parameter 590
30.2 Restricted maxima and minima: the Lagrange multiplier 592
30.3 Curvilinear coordinates in two dimensions 598
30.4 Orthogonal coordinates 600
30.5 The chain rule for two parameters 601
30.6 The use of differentials 604
Problems 606

31 Functions of any number of variables
31.1 The incremental approximation; errors 608
31.2 Implicit differentiation 610
32 Double integration

32.1 Repeated integrals with constant limits 630
32.2 Examples leading to repeated integrals with constant limits 632
32.3 Repeated integrals over non-rectangular regions 634
32.4 Changing the order of integration for non-rectangular regions 636
32.5 Double integrals 637
32.6 Polar coordinates 640
32.7 Separable integrals 643
32.8 General change of variable; the Jacobian determinant 645

Problems 649

33 Line integrals

33.1 Illustrating a line integral 652
33.2 General line integrals in two and three dimensions 655
33.3 Paths parallel to the axes 659
33.4 Path independence and perfect differentials 659
33.5 Closed paths 661
33.6 Green’s theorem 663
33.7 Line integrals and work 665
33.8 Conservative fields 667
33.9 Potential for a conservative field 669
33.10 Single-valuedness of potentials 670

Problems 673

34 Vector fields: divergence and curl

34.1 Vector fields and field lines 676
34.2 Divergence of a vector field 677
34.3 Surface and volume integrals 678
34.4 The divergence theorem 682
34.5 Curl of a vector field 684
34.6 Cylindrical polar coordinates 688
34.7 Curvilinear coordinates 690

Problems 692

35 Sets

35.1 Notation 694
35.2 Equality, union, and intersection 695
35.3 Venn diagrams 697

Problems 702
36 Boolean algebra: logic gates and switching functions
 36.1 Laws of Boolean algebra 705
 36.2 Logic gates and truth tables 707
 36.3 Logic networks 709
 36.4 The inverse truth-table problem 711
 36.5 Switching circuits 712
 Problems 714

37 Graph theory and its applications
 37.1 Examples of graphs 717
 37.2 Definitions and properties of graphs 718
 37.3 How many simple graphs are there? 720
 37.4 Paths and cycles 721
 37.5 Trees 722
 37.6 Electrical circuits: the cutset method 723
 37.7 Signal-flow graphs 726
 37.8 Planar graphs 729
 37.9 Further applications 731
 Problems 734

38 Difference equations
 38.1 Discrete variables 739
 38.2 Difference equations: general properties 742
 38.3 First-order difference equations and the cobweb 743
 38.4 Constant-coefficient linear difference equations 744
 38.5 The logistic difference equation 750
 Problems 754

PART VII

39 Probability
 39.1 Introduction 757
 39.2 Sample spaces, events, and probability 758
 39.3 Sets and probability 760
 39.4 Frequencies and combinations 764
 39.5 Conditional probability 767
 39.6 Independent events 769
 39.7 Total probability 770
 39.8 Bayes' theorem 771
 Problems 773

40 Random variables and probability distributions
 40.1 Random variables 775
 40.2 Probability distributions 776
 40.3 The binomial distribution 777
 40.4 Expected value and variance 779
 40.5 Geometric distribution 782
 40.6 Poisson distribution 783
 40.7 Other discrete distributions 785