SPECTRAL MODELS OF RANDOM FIELDS IN MONTE CARLO METHODS

S.M. PRIGARIN

///VSP///

UTRECHT • BOSTON • KÖLN • TOKYO - 2001
Contents

Chapter 1. Approximate modelling of homogeneous Gaussian fields on the basis of spectral decomposition 1
 1.1. Spectral models of random processes and fields 1
 1.1.1. Basic principles of constructing spectral models ... 1
 1.1.2. Generalized scheme. About numerical analysis of the error 4
 1.1.3. Examples of spectral models of stationary processes 6
 1.1.4. Examples of spectral models for isotropic fields on a plane 9
 1.1.5. Spectral models for isotropic fields in three-dimensional space 17
 1.2. Technique of successive refinement of spectral models on the same probability space 21
 1.2.1. Description of the algorithm 21
 1.2.2. Auxiliary statements and examples 22
 1.3. Conditional spectral models 24
 1.3.1. Statement of the problem 25
 1.3.2. Method of solving the problem 26
 1.3.3. On realization of numerical algorithm 30
 1.4. Specialized models for isotropic fields on a k-dimensional space and on a sphere 33
 1.4.1. Models of isotropic fields on a k-dimensional space 33
 1.4.2. Spectral models of isotropic fields on a sphere 38
 1.5. Certain applications of scalar spectral models 39
 1.5.1. Simulation of clouds 40
 1.5.2. Spectral model of the sea surface undulation 43
 1.6. Further remarks 47
 1.6.1. Nonhomogeneous spectral models 47
 1.6.2. Approximate modelling of Gaussian vectors of stationary type by discrete Fourier transform 47
Contents

3.4.1. Convergence of finite-dimensional distributions . . 92
3.4.2. Weak convergence in spaces L^p and C^p 93
3.5. Remark on allowance for bias of estimates constructed by approximate models 96

Chapter 4. On optimization and convergence of functional Monte Carlo estimators 100

4.1. Asymptotic efficiency of estimators in the method of dependent tests. Convergence conditions 100
4.1.1. Asymptotic computational cost 100
4.1.2. Convergence conditions 102
4.2. Optimal functional estimators in Sobolev’s Hilbert spaces 106
4.2.1. F-deviation of estimators in Sobolev’s Hilbert spaces 106
4.2.2. H-optimal estimators for computing integrals depending on a parameter 107
4.2.3. H-optimal “absorption” estimator for computing a family of functionals of solution of an integral equation of the second kind 110
4.2.4. Investigation of H-optimal “collision” estimator . . 114
4.3. Convergence of collision and absorption functional estimators ... 119
4.4. On convergence and optimization of local estimators . . 121
4.5. Additional remarks .. 123
4.5.1. On convergence in the method of dependent tests . 123
4.5.2. Discrete and generalized versions of optimization for Monte Carlo estimators in Sobolev’s Hilbert spaces 126

Appendix A. Gaussian distributions: properties and simulation 130

A.1. Gaussian distributions 130
A.2. Conditional Gaussian distributions 132
A.3. Schemes of moving average and autoregression 133
A.4. Generalized Wiener process 137
Appendix B. Solution of boundary value problems for linear systems of stochastic differential equations 140
B.1. General relations 140
B.2. Boundary value problems for time-invariant linear systems 142
B.3. On correctness of boundary value problems 146
B.4. Stationary boundary value problems 149
B.5. Boundary value problems for the second-order autonomous linear SDE 150

Appendix C. On interpolation of positive definite functions and stationary random sequences 155

Appendix D. Coding of multiplicative pseudorandom number generators 167
D.1. Multiplicative generators: description and coding 167
D.2. Procedures in Pascal, Fortran and C 171

Bibliography 185
Notation 196
Index 197