Contents

Preface, ix

1. **The principles and limitations of geophysical exploration methods, 1**
 - 1.1 Introduction, 1
 - 1.2 The survey methods, 1
 - 1.3 The problem of ambiguity in geophysical interpretation, 6
 - 1.4 The structure of the book, 7

2. **Geophysical data processing, 8**
 - 2.1 Introduction, 8
 - 2.2 Digitization of geophysical data, 8
 - 2.3 Spectral analysis, 10
 - 2.4 Waveform processing, 13
 - 2.4.1 Convolution, 13
 - 2.4.2 Deconvolution, 16
 - 2.4.3 Correlation, 16
 - 2.5 Digital filtering, 17
 - 2.5.1 Frequency filters, 18
 - 2.5.2 Inverse (deconvolution) filters, 19
 - 2.6 Imaging and modelling, 19
 - Problems, 20
 - Further reading, 20

3. **Elements of seismic surveying, 21**
 - 3.1 Introduction, 21
 - 3.2 Stress and strain, 21
 - 3.3 Seismic waves, 22
 - 3.3.1 Body waves, 23
 - 3.3.2 Surface waves, 24
 - 3.3.3 Waves and rays, 25
 - 3.4 Seismic wave velocities of rocks, 26
 - 3.5 Attenuation of seismic energy along ray paths, 27
 - 3.6 Ray paths in layered media, 28
 - 3.6.1 Reflection and transmission of normally incident seismic rays, 28
 - 3.6.2 Reflection and refraction of obliquely incident rays, 30
 - 3.6.3 Critical refraction, 31
 - 3.6.4 Diffraction, 31
 - 3.7 Reflection and refraction surveying, 32
 - 3.8 Seismic data acquisition systems, 33
 - 3.8.1 Seismic sources and the seismic/acoustic spectrum, 34
 - 3.8.2 Seismic transducers, 39
 - 3.8.3 Seismic recording systems, 41
 - Problems, 42
 - Further reading, 42

4. **Seismic reflection surveying, 43**
 - 4.1 Introduction, 43
 - 4.2 Geometry of reflected ray paths, 43
 - 4.2.1 Single horizontal reflector, 43
 - 4.2.2 Sequence of horizontal reflectors, 45
 - 4.2.3 Dipping reflector, 46
 - 4.2.4 Ray paths of multiple reflections, 47
 - 4.3 The reflection seismogram, 48
 - 4.3.1 The seismic trace, 48
 - 4.3.2 The shot gather, 49
 - 4.3.3 The CMP gather, 50
 - 4.4 Multichannel reflection survey design, 51
 - 4.4.1 Vertical and horizontal resolution, 52
 - 4.4.2 Design of detector arrays, 53
 - 4.4.3 Common mid-point (CMP) surveying, 54
 - 4.4.4 Display of seismic reflection data, 57
 - 4.5 Time corrections applied to seismic traces, 57
 - 4.6 Static correction, 57
 - 4.7 Velocity analysis, 59
 - 4.8 Filtering of seismic data, 61
 - 4.8.1 Frequency filtering, 62
 - 4.8.2 Inverse filtering (deconvolution), 62
 - 4.8.3 Velocity filtering, 65
 - 4.9 Migration of reflection data, 67
 - 4.10 3D seismic reflection surveys, 72
5 Seismic refraction surveying, 99

5.1 Introduction, 99
5.2 Geometry of refracted ray paths: planar interfaces, 99
 5.2.1 Two-layer case with horizontal interface, 100
 5.2.2 Three-layer case with horizontal interface, 101
 5.2.3 Multilayer case with horizontal interfaces, 102
 5.2.4 Dipping-layer case with planar interfaces, 102
 5.2.5 Faulted planar interfaces, 104
5.3 Profile geometries for studying planar layer problems, 105
5.4 Geometry of refracted ray paths: irregular (non-planar) interfaces, 106
 5.4.1 Delay time, 106
 5.4.2 The plus–minus interpretation method, 108
 5.4.3 The generalized reciprocal method, 109
5.5 Construction of wavefronts and ray-tracing, 110
5.6 The hidden and blind layer problems, 110
5.7 Refraction in layers of continuous velocity change, 112
5.8 Methodology of refraction profiling, 112
 5.8.1 Field survey arrangements, 112
 5.8.2 Recording scheme, 113
 5.8.3 Weathering and elevation corrections, 114
 5.8.4 Display of refraction seismograms, 115
5.9 Other methods of refraction surveying, 115
5.10 Seismic tomography, 117
5.11 Applications of seismic refraction surveying, 119
 5.11.1 Engineering and environmental surveys, 119
 5.11.2 Hydrological surveys, 120
 5.11.3 Crustal seismology, 120
 5.11.4 Two-ship seismic surveying: combined refraction and reflection surveying, 122
Problems, 123
Further reading, 124

6 Gravity surveying, 125

6.1 Introduction, 125
6.2 Basic theory, 125
6.3 Units of gravity, 126
6.4 Measurement of gravity, 126
6.5 Gravity anomalies, 129
6.6 Gravity anomalies of simple-shaped bodies, 130
6.7 Gravity surveying, 132
6.8 Gravity reduction, 133
 6.8.1 Drift correction, 133
 6.8.2 Latitude correction, 133
 6.8.3 Elevation corrections, 134
 6.8.4 Tidal correction, 136
 6.8.5 Eötvös correction, 136
 6.8.6 Free-air and Bouguer anomalies, 136
6.9 Rock densities, 137
6.10 Interpretation of gravity anomalies, 139
 6.10.1 The inverse problem, 139
 6.10.2 Regional fields and residual anomalies, 139
 6.10.3 Direct interpretation, 140
 6.10.4 Indirect interpretation, 142
6.11 Elementary potential theory and potential field manipulation, 144
6.12 Applications of gravity surveying, 147
Problems, 150
Further reading, 153
7.7 Ground magnetic surveys, 164
7.8 Aeromagnetic and marine surveys, 164
7.9 Reduction of magnetic observations, 165
7.9.1 Diurnal variation correction, 165
7.9.2 Geomagnetic correction, 166
7.9.3 Elevation and terrain corrections, 166
7.10 Interpretation of magnetic anomalies, 166
7.10.1 Introduction, 166
7.10.2 Direct interpretation, 168
7.10.3 Indirect interpretation, 170
7.11 Potential field transformations, 172
7.12 Applications of magnetic surveying, 173
Problems, 180
Further reading, 181

8 Electrical surveying, 183
8.1 Introduction, 183
8.2 Resistivity method, 183
8.2.1 Introduction, 183
8.2.2 Resistivities of rocks and minerals, 183
8.2.3 Current flow in the ground, 184
8.2.4 Electrode spreads, 186
8.2.5 Resistivity surveying equipment, 186
8.2.6 Interpretation of resistivity data, 187
8.2.7 Vertical electrical sounding interpretation, 188
8.2.8 Constant separation traversing interpretation, 193
8.2.9 Limitations of the resistivity method, 196
8.2.10 Applications of resistivity surveying, 196
8.3 Induced polarization (IP) method, 199
8.3.1 Principles, 199
8.3.2 Mechanisms of induced polarization, 199
8.3.3 Induced polarization measurements, 200
8.3.4 Field operations, 201
8.3.5 Interpretation of induced polarization data, 201
8.3.6 Applications of induced polarization surveying, 202
8.4 Self-potential (SP) method, 203
8.4.1 Introduction, 203
8.4.2 Mechanism of self-potential, 203
8.4.3 Self-potential equipment and survey procedure, 203
8.4.4 Interpretation of self-potential anomalies, 204
Problems, 205
Further reading, 207

9 Electromagnetic surveying, 208
9.1 Introduction, 208
9.2 Depth of penetration of electromagnetic fields, 208
9.3 Detection of electromagnetic fields, 209
9.4 Tilt-angle methods, 209
9.4.1 Tilt-angle methods employing local transmitters, 210
9.4.2 The VLF method, 210
9.4.3 The AFMAG method, 212
9.5 Phase measuring systems, 212
9.6 Time-domain electromagnetic surveying, 214
9.7 Non-contacting conductivity measurement, 216
9.8 Airborne electromagnetic surveying, 218
9.8.1 Fixed separation systems, 218
9.8.2 Quadrature systems, 220
9.9 Interpretation of electromagnetic data, 221
9.10 Limitations of the electromagnetic method, 221
9.11 Telluric and magnetotelluric field methods, 221
9.11.1 Introduction, 221
9.11.2 Surveying with telluric currents, 222
9.11.3 Magnetotelluric surveying, 224
9.12 Ground-penetrating radar, 225
9.13 Applications of electromagnetic surveying, 227
Problems, 228
Further reading, 230

10 Radiometric surveying, 231
10.1 Introduction, 231
10.2 Radioactive decay, 231
10.3 Radioactive minerals, 232
10.4 Instruments for measuring radioactivity, 233
10.4.1 Geiger counter, 233
10.4.2 Scintillation counter, 233
10.4.3 Gamma-ray spectrometer, 233
10.4.4 Radon emanometer, 234
10.5 Field surveys, 235
10.6 Example of radiometric surveying, 235
Further reading, 235

11 Geophysical borehole logging, 236
11.1 Introduction to drilling, 236
11.2 Principles of well logging, 236
11.3 Formation evaluation, 237
11.4 Resistivity logging, 237
11.4.1 Normal log, 238
11.4.2 Lateral log, 239
11.4.3 Laterolog, 240
11.4.4 Microlog, 241
11.4.5 Porosity estimation, 241
Problems, 205
Further reading, 207
11.4.6 Water and hydrocarbon saturation estimation, 241
11.4.7 Permeability estimation, 242
11.4.8 Resistivity dipmeter log, 242
11.5 Induction logging, 243
11.6 Self-potential logging, 243
11.7 Radiometric logging, 244
 11.7.1 Natural gamma radiation log, 244
 11.7.2 Gamma-ray density log, 244
 11.7.3 Neutron-gamma-ray log, 245
11.8 Sonic logging, 246
11.9 Temperature logging, 247
11.10 Magnetic logging, 247
11.10.1 Magnetic log, 247
11.10.2 Nuclear magnetic resonance log, 247
11.11 Gravity logging, 247
 Problems, 248
 Further reading, 249
Appendix: SI, c.g.s. and Imperial (customary USA) units and conversion factors, 250
References, 251
Index, 257