Disturbed soil properties and geotechnical design

Andrew Schofield
Contents

Foreword vii
Preface x
Nomenclature xiv

1 Slip plane properties 1
 1.1 Maps of soil behaviour 1
 1.2 Masonry in Coulomb’s Essay 7
 1.3 Marshal Vauban’s fortress wall 12
 1.4 Soil properties in Coulomb’s Essay 15
 1.5 Coulomb’s law 19

2 Interlocking, critical states (CS) and liquefaction 22
 2.1 An interlocking soil strength component 22
 2.2 Frictional dissipation of energy and the CS 29
 2.3 Reynolds’ dilatancy and Hazen’s liquefied soil 32
 2.4 Hazen’s liquefaction and Casagrande 35
 2.5 Herrick’s liquefaction 41
 2.6 Failure at low effective stress 43

3 Soil classification and strength 46
 3.1 Casagrande’s soil classification and soil plasticity 46
 3.2 Hvorslev’s clay strength data and the CS line of clay 50
 3.3 CS interpretation of Hvorslev’s shear box data 58

4 Limiting stress states and CS 65
 4.1 Strain circle, soil stiffness and strength 65
 4.2 Rankine’s soil mechanics 73
 4.3 Skempton’s parameters A and B, and CS values of c and φ 78

5 Plasticity and original Cam Clay (OCC) 88
 5.1 Baker’s plastic design of steel frame structures 88
 5.2 The associated flow rule and Drucker’s stability criterion 91
5.3 Thurairajah's power dissipation function 94
5.4 The OCC yield locus 96
5.5 Test data, model modification and OCC teaching 105
5.6 Laboratory testing and geotechnical design 110

6 Geotechnical plastic design 112
6.1 The place of plastic analysis in design 112
6.2 Lessons from the geotechnical centrifuge 114
6.3 Herrick's liquefaction in models 117
6.4 Geotechnical centrifuge developments 123
6.5 Conclusions 125

References 129

Index 134