THE PHYSICS OF EXTRAGALACTIC RADIO SOURCES

David S. De Young

The University of Chicago Press
Chicago & London
Contents

Preface xiii

1 INTRODUCTION 1
1.1 Perspective 1
1.2 Preliminaries 2
 1.2.1 Definitions 2
 1.2.2 Historical Note 3
 1.2.3 Names 4
 1.2.4 Techniques 5
 1.2.5 Some Physical Properties 7
1.3 Morphological Types and Definitions 14
 1.3.1 Extended Sources 15
 1.3.2 Compact Objects 26
 1.3.3 Parent Objects 32

2 OVERVIEW 37
2.1 Introduction 37
2.2 The Grand Questions 37
 2.2.1 What Is the Nature of the Central Engine? 37
 2.2.2 How Do Jets Form? 39
 2.2.3 What Is the Influence of the External Environment? 40
 2.2.4 What Is the Role of Nearby Objects? 41
 2.2.5 What Are the Effects of Cosmic Evolution? 42
2.3 A Qualitative Picture of a Radio Source:
 Problems and Processes 43
 2.3.1 The Central Engine 43
 2.3.2 The Inner Jet Region 49
 2.3.3 Large Scale Jets - Basic Processes 52
 2.3.4 Radio Sources and the Environment 62

3 SPECIAL PHYSICAL PROCESSES 64
3.1 Introduction 64
3.2 Relativistic Effects 65
3.2.1 Special Relativistic Phenomena 65
3.2.2 General Relativistic Effects 78
3.3 Radiative Processes 92
 3.3.1 Synchrotron Radiation 92
 3.3.2 Inverse Compton Radiation 112
 3.3.3 Bremsstrahlung Radiation 116

4 COLLIMATED FLOWS AND SHOCK WAVES 122
 4.1 Introduction 122
 4.2 Basic Processes in Hydrodynamics and MHD 124
 4.2.1 Conceptual Preliminaries 124
 4.2.2 Hydrodynamic Flows 125
 4.2.3 Magnetic Fields and Fluid Flows 151
 4.3 Mixing Layers 158
 4.4 Collimated Outflows and Jets 162
 4.4.1 Overview 162
 4.4.2 Mass, Momentum, and Energy Transport 164
 4.4.3 Relativistic Jets 167
 4.4.4 Some Simple Analytic Relations 170
 4.4.5 Bent Jets 172
 4.4.6 Numerical Simulations 173

5 MICROSCALE PROCESSES 184
 5.1 Introduction 184
 5.2 Particle Acceleration 184
 5.2.1 Fermi Acceleration 187
 5.2.2 Acceleration at Shock Fronts 189
 5.3 Turbulence 194
 5.3.1 Qualitative Overview 194
 5.3.2 Some Properties of Homogeneous Incompressible Turbulence 197
 5.3.3 MHD Turbulence and Turbulent Dynamos 203
 5.4 The Effects of Particle Energy Losses 209
 5.4.1 Preliminaries 209
 5.4.2 Simple Evolution of Synchrotron Spectra 210
 5.4.3 Synchrotron Losses without Sources or Sinks 211
 5.4.4 Evolution of Complex Spectra 212
 5.4.5 Summary of Spectral Evolution 214

6 CLASSICAL DOUBLE AND HIGH LUMINOSITY SOURCES 215
 6.1 Introduction 215
 6.1.1 Overview 215
 6.1.2 An Historical Aside 216
12.1.1 A Cautionary Overview 467
12.2 Black Holes – The Prime Mover 471
 12.2.1 Some General Relations 471
 12.2.2 Energy Extraction from Black Holes 474
12.3 Accretion Disks – The Fueling Paradigms 486
 12.3.1 Thin Disks 487
 12.3.2 Problems with Thin Accretion Disks 494
 12.3.3 Thick Accretion Disks 497
12.4 Acceleration and Collimation 504
 12.4.1 Radiative Acceleration 504
 12.4.2 Magnetohydrodynamic Processes 507
12.5 Final Words 514

Appendix 517
References 527
Index 551