Mantle Plumes and Their Record in Earth History

KENT C. CONDIE
Department of Earth and Environmental Science
New Mexico Institute of Mining and Technology
Socorro, New Mexico
Contents

Preface

1 Introduction

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Features of Mantle Plumes</td>
<td>1</td>
</tr>
<tr>
<td>Plume Nomenclature</td>
<td>2</td>
</tr>
<tr>
<td>Internal Structure of the Mantle</td>
<td>3</td>
</tr>
<tr>
<td>An Overview</td>
<td>3</td>
</tr>
<tr>
<td>The Lithosphere</td>
<td>5</td>
</tr>
<tr>
<td>The Low-Velocity Zone</td>
<td>5</td>
</tr>
<tr>
<td>The 410-km Discontinuity</td>
<td>7</td>
</tr>
<tr>
<td>The 660-km Discontinuity</td>
<td>8</td>
</tr>
<tr>
<td>The Lower Mantle</td>
<td>9</td>
</tr>
<tr>
<td>General Features</td>
<td>9</td>
</tr>
<tr>
<td>The D" Layer</td>
<td>9</td>
</tr>
<tr>
<td>Plumes and Convection in the Mantle</td>
<td>11</td>
</tr>
<tr>
<td>Organizational Strategy</td>
<td>12</td>
</tr>
</tbody>
</table>

2 Hotspots and Mantle Upwellings

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>14</td>
</tr>
<tr>
<td>Hotspot Characteristics</td>
<td>14</td>
</tr>
<tr>
<td>Hotspot Tracks</td>
<td>16</td>
</tr>
<tr>
<td>Hawaiian–Emperor Volcanic Chain</td>
<td>16</td>
</tr>
<tr>
<td>Louisville Volcanic Chain</td>
<td>19</td>
</tr>
<tr>
<td>Easter Volcanic Chain</td>
<td>19</td>
</tr>
<tr>
<td>Austral–Cook and Society Volcanic Chains</td>
<td>20</td>
</tr>
<tr>
<td>Continental Hotspot Tracks</td>
<td>20</td>
</tr>
<tr>
<td>Yellowstone</td>
<td>23</td>
</tr>
<tr>
<td>Seamount Arrays</td>
<td>24</td>
</tr>
<tr>
<td>Hotspot Swells</td>
<td>25</td>
</tr>
<tr>
<td>Hotspot Volcanoes</td>
<td>27</td>
</tr>
<tr>
<td>Hotspot Magma Composition</td>
<td>28</td>
</tr>
</tbody>
</table>
Contents

Seismicity and Tectonics of Hotspots 30
 Hawaii 30
 Yellowstone 32
Plume–Hotspot Relationships 33
Plume–Ridge Interactions 37
The Hotspot Reference Frame 39
True Polar Wander 42
Hotspot Origin 42
Venusian Hotspots 43
Mantle Upwellings 44
 Introduction 44
 Superswells 45
 Geoid Anomalies 46
 Seismic-Wave and Density Anomalies 48
 The Pacific Upwelling 50
 The African Upwelling 50
Descending Slabs and Mantle Upwellings 51
Geotectonic Bipolarity 51
Plumes in Perspective 52

3 Large Igneous Provinces 54
 Introduction 54
 Characteristics of Flood Basalts 57
 LIP Eruption Rates 59
 Crustal Structure of Oceanic Plateaus 59
 Seismic Structure 59
 Composition of the Deep Crust 62
 Lithospheric Roots 63
 Examples of Large Igneous Provinces 64
 Columbia River Basalts 64
 North Atlantic Igneous Province 67
 Ontong Java and Hikurangi Plateaus 69
 General Features 69
 Tectonic History 70
 The Ontong–Australian Plate Collision 72
 Hikurangi Plateau 72
 Siberian Traps 75
 Paraná–Etendeka Flood Basalts 76
 Deccan Traps 78
 Kerguelen Plateau 79
 Karoo–Ferrar Province 82
 Ethiopian and East African Plateaus 85
 Plumes and Sediments 87
Contents

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIPS on Mars and Venus</td>
<td>88</td>
</tr>
<tr>
<td>Martian LIPS</td>
<td>89</td>
</tr>
<tr>
<td>Venusian LIPS</td>
<td>92</td>
</tr>
<tr>
<td>Giant Dyke Swarms</td>
<td>95</td>
</tr>
<tr>
<td>Introduction</td>
<td>95</td>
</tr>
<tr>
<td>Relationship of Dyke Swarms to Plumes</td>
<td>97</td>
</tr>
<tr>
<td>Dyke Swarms on Venus and Mars</td>
<td>100</td>
</tr>
<tr>
<td>Large Layered Intrusions</td>
<td>103</td>
</tr>
<tr>
<td>The Muskox Intrusion</td>
<td>104</td>
</tr>
<tr>
<td>The Bushveld Complex</td>
<td>104</td>
</tr>
<tr>
<td>General Features</td>
<td>104</td>
</tr>
<tr>
<td>Crystallization</td>
<td>105</td>
</tr>
<tr>
<td>A Plume Origin</td>
<td>106</td>
</tr>
<tr>
<td>Kimberlites, Diamonds, and Mantle Plumes</td>
<td>106</td>
</tr>
<tr>
<td>LIP Magma Composition</td>
<td>107</td>
</tr>
<tr>
<td>LIP Mineral Deposits</td>
<td>111</td>
</tr>
<tr>
<td>LIPS in Perspective</td>
<td>112</td>
</tr>
<tr>
<td>4 Mantle Plume Generation and Melting</td>
<td>115</td>
</tr>
<tr>
<td>Introduction</td>
<td>115</td>
</tr>
<tr>
<td>Plume Characteristics</td>
<td>115</td>
</tr>
<tr>
<td>Experimental Models</td>
<td>115</td>
</tr>
<tr>
<td>Numerical Models</td>
<td>118</td>
</tr>
<tr>
<td>Uplift, Deformation, and Subsidence</td>
<td>118</td>
</tr>
<tr>
<td>General Features</td>
<td>118</td>
</tr>
<tr>
<td>Laboratory Models</td>
<td>119</td>
</tr>
<tr>
<td>Field and Dating Evidence</td>
<td>119</td>
</tr>
<tr>
<td>Wrinkle Ridges</td>
<td>121</td>
</tr>
<tr>
<td>How Fast Do Plumes Rise?</td>
<td>122</td>
</tr>
<tr>
<td>How Long Do Plumes Survive?</td>
<td>122</td>
</tr>
<tr>
<td>Entrainment in Plumes</td>
<td>123</td>
</tr>
<tr>
<td>Plume Roots</td>
<td>125</td>
</tr>
<tr>
<td>Seismic Evidence</td>
<td>125</td>
</tr>
<tr>
<td>Osmium Isotope Evidence</td>
<td>127</td>
</tr>
<tr>
<td>Plume Families and Head–Tail Detachments</td>
<td>127</td>
</tr>
<tr>
<td>Plume Temperatures</td>
<td>128</td>
</tr>
<tr>
<td>Phase Transitions and Plumes</td>
<td>129</td>
</tr>
<tr>
<td>Hard Turbulence and Plumes</td>
<td>131</td>
</tr>
<tr>
<td>Effect of Planetary Rotation on Plume Distribution</td>
<td>132</td>
</tr>
<tr>
<td>Melting in Mantle Plumes</td>
<td>133</td>
</tr>
<tr>
<td>Introduction</td>
<td>133</td>
</tr>
<tr>
<td>Rift-Related Melting</td>
<td>134</td>
</tr>
<tr>
<td>Melting in a Mantle Plume</td>
<td>136</td>
</tr>
</tbody>
</table>
Plumes with Eclogite 137
Lithosphere–Plume Interactions 138
 Plume Erosion of the Lithosphere 138
 Dehydration Melting of the Lithosphere 139
Depth of Melting 140
Magma Composition and Plume Melting 141
Do We Need More Plume Modeling? 143

5 Plumes as Tracers of Mantle Processes 145
Introduction 145
Identifying Oceanic Mantle Components with Isotopic Tracers 146
 An Overview 146
 Depleted Mantle 147
 HIMU Mantle 148
 Enriched Mantle 148
 Helium Isotopes 149
 The Dupal Anomaly 150
Summary 152
Lithosphere and Crustal Contributions to Plumes 152
 Introduction 152
 Trace Elements 152
 Overview 152
 Nb/U Ratios in the Mantle 154
 Th/Ta and La/Yb Ratios 156
 Nd and Sr Isotopes 159
 High- and Low-Ti Basalts 162
 Oxygen Isotopes 163
 Osmium Isotopes 163
 Summary 164
 Mixing in the Mantle 165
 New Ideas on Mantle Convection 167

6 Mantle Plumes and Continental Growth 170
Introduction 170
 Accreted Oceanic Plateaus 171
 Caribbean Oceanic Plateau 171
 Tectonic Overview 171
 Mantle Sources 172
 Tectonic History of the Caribbean Plateau 174
 Accreted Oceanic Plateaus in the American Cordillera 175
 Wrangellia Terrane 175
 Angayucham Terrane 177
 Bridge River Terrane 178
 Siletz Terrane 179
 Accreted Oceanic Plateaus in Japan 179
How Do Continents Grow? 182
Contents

Plume-Related Underplating during Supercontinent Breakup 183
Accretion of Plume Heads to the Lithosphere 185
 Oceanic Plateaus and Continental Growth 186
 Oceanic Plateaus as Lower Continental Crust 186
 Making Continental Crust from Oceanic Plateaus 190
 Discussion of Oceanic Plateau Accretion 191
What the Future Holds 193

7 Mantle Plumes in the Archean 195
 Introduction 195
 Tracking Plumes into the Archean with Greenstones 195
 Overview 195
 Greenstone Lithologic Associations 196
 Greenstone Geochemistry 198
 Komatiites 202
 Overview 202
 Heads It's Basalts, Tails It's Komatiites 202
 Geochemistry 203
 Archean Flood Basalts 206
 Plume-Head Underplating of the Lithosphere 208
 Secular Changes in the Mantle 208
 The Appearance of Enriched Mantle 208
 Komatiites as Geothermometers 210
 How Hot Was the Archean Mantle? 211
 Was the Archean Mantle Iron-Rich? 212
 Were Mantle Plumes More Widespread in the Archean? 214
 A Final Word 215

8 Superplume Events 216
 Plumes and Supercontinents 216
 Introduction 216
 Mantle Plumes and Supercontinent Breakup 216
 Large Plates and Mantle Upwelling 220
 The Supercontinent Cycle 222
 Episodic Crustal Growth 223
 The Mid-Cretaceous Superplume Event 227
 What Is a Superplume Event? 229
 Precambrian Superplume Events 229
 Kimberlites and Superplumes 230
 Initiation of Superplume Events 231
 Slab Avalanches 231
 Core Rotational Dynamics 231
 A Superplume Event Model 232
 Superplume Events and Supercontinents 235
 The First Supercontinent 237
 The Grenville Event at 1 Ga 238
Superchrons and Superplumes
Perspective

9 Mantle Plumes and Earth Systems

Introduction
Superplumes, Supercontinents, and the Carbon Cycle
 Introduction
Supercontinent Formation
Supercontinent Breakup
Superplume Events
Sea Level
Global Warming
The Biosphere

Sedimentary Systems
 Strontium Isotopes in Marine Carbonates
 Banded Iron Formation
 Sedimentary Phosphates

Geological Consequences of Superplume Events and Supercontinents
 Mid-Cretaceous Event
 Permo–Carboniferous Event
 Ordovician Event
 The 1.9-Ga Event
 Sea Level
 Black Shales
 Paleoammonites
 Banded Iron Formation
 Sedimentary Phosphates
 Strontium Isotopes in Seawater
 Stromatolites
 Massive Sulfate Evaporites
 Carbon and Sulfur Isotopes
 The Case for a 1.9-Ga Superplume Event
 The 2.7-Ga Event
 2.0- and 0.6-Ga Events
 Mass Extinctions
Conclusion

References
Index

Color plates follow p. 194