CONTENTS

Foreword xvii

1. Linear Spaces 1
 Axioms for linear spaces—Infinite-dimensional examples—Subspace, linear span—Quotient space—Isomorphism—Convex sets—Extreme subsets

2. Linear Maps 8
 2.1 Algebra of linear maps, 8
 Axioms for linear maps—Sums and composites—Invertible linear maps—Nullspace and range—Invariant subspaces
 2.2 Index of a linear map, 12
 Degenerate maps—Pseudoinverse—Index—Product formula for the index—Stability of the index

3. The Hahn-Banach Theorem 19
 3.1 The extension theorem, 19
 Positive homogeneous, subadditive functionals—Extension of linear functionals—Gauge functions of convex sets
 3.2 Geometric Hahn-Banach theorem, 21
 The hyperplane separation theorem
 3.3 Extensions of the Hahn-Banach theorem, 24
 The Agnew-Morse theorem—The Bohnenblust-Sobczyk-Soukhomlinov theorem

4. Applications of the Hahn-Banach theorem 29
 4.1 Extension of positive linear functionals, 29
 4.2 Banach limits, 31
CONTENTS

4.3 Finitely additive invariant set functions, 33
Historical note, 34

5. Normed Linear Spaces 36

5.1 Norms, 36
Norms for quotient spaces—Complete normed linear spaces—The spaces C, B—L^p spaces and Hölder's inequality—Sobolev spaces, embedding theorems—Separable spaces

5.2 Noncompactness of the unit ball, 43
Uniform convexity—The Mazur-Ulam theorem on isometries

5.3 Isometries, 47

6. Hilbert Space 52

6.1 Scalar product, 52
Schwarz inequality—Parallelogram identity—Completeness, closure—ℓ^2, L^2

6.2 Closest point in a closed convex subset, 54
Orthogonal complement of a subspace—Orthogonal decomposition

6.3 Linear functionals, 56
The Riesz-Frechet representation theorem—Lax-Milgram lemma

6.4 Linear span, 58
Orthogonal projection—Orthonormal bases, Gram-Schmidt process—Isometries of a Hilbert space

7. Applications of Hilbert Space Results 63

7.1 Radon-Nikodym theorem, 63

7.2 Dirichlet's problem, 65
Use of the Riesz-Frechet theorem—Use of the Lax-Milgram theorem—Use of orthogonal decomposition

8. Duals of Normed Linear Spaces 72

8.1 Bounded linear functionals, 72
Dual space

8.2 Extension of bounded linear functionals, 74
Dual characterization of norm—Dual characterization of distance from a subspace—Dual characterization of the closed linear span of a set
CONTENTS

8.3 Reflexive spaces, 78
 Reflexivity of L^p, $1 < p < \infty$—Separable spaces—Separability of the dual—Dual of $C(Q)$, Q compact—Reflexivity of subspaces

8.4 Support function of a set, 83
 Dual characterization of convex hull—Dual characterization of distance from a closed, convex set

9. Applications of Duality 87

 9.1 Completeness of weighted powers, 87
 9.2 The M"untz approximation theorem, 88
 9.3 Runge's theorem, 91
 9.4 Dual variational problems in function theory, 91
 9.5 Existence of Green's function, 94

10. Weak Convergence 99

 10.1 Uniform boundedness of weakly convergent sequences, 101
 Principle of uniform boundedness—Weakly sequentially closed convex sets
 10.2 Weak sequential compactness, 104
 Compactness of unit ball in reflexive space
 10.3 Weak* convergence, 105
 Helly's theorem

11. Applications of Weak Convergence 108

 11.1 Approximation of the δ function by continuous functions, 108
 Toeplitz's theorem on summability
 11.2 Divergence of Fourier series, 109
 11.3 Approximate quadrature, 110
 11.4 Weak and strong analyticity of vector-valued functions, 111
 11.5 Existence of solutions of partial differential equations, 112
 Galerkin's method
 11.6 The representation of analytic functions with positive real part, 115
 Herglotz-Riesz theorem

12. The Weak and Weak* Topologies 118

 Comparison with weak sequential topology—Closed convex sets in the weak topology—Weak compactness—Alaoglu's theorem
13. **Locally Convex Topologies and the Krein-Milman Theorem**
13.1 Separation of points by linear functionals, 123
13.2 The Krein-Milman theorem, 124
13.3 The Stone-Weierstrass theorem, 126
13.4 Choquet's theorem, 128

14. **Examples of Convex Sets and Their Extreme Points**
14.1 Positive functionals, 133
14.2 Convex functions, 135
14.3 Completely monotone functions, 137
14.4 Theorems of Carathéodory and Bochner, 141
14.5 A theorem of Krein, 147
14.6 Positive harmonic functions, 148
14.7 The Hamburger moment problem, 150
14.8 G. Birkhoff's conjecture, 151
14.9 De Finetti's theorem, 156
14.10 Measure-preserving mappings, 157
Historical note, 159

15. **Bounded Linear Maps**
15.1 Boundedness and continuity, 160
Norm of a bounded linear map—Transpose
15.2 Strong and weak topologies, 165
Strong and weak sequential convergence
15.3 Principle of uniform boundedness, 166
15.4 Composition of bounded maps, 167
15.5 The open mapping principle, 168
Closed graph theorem
Historical note, 172

16. **Examples of Bounded Linear Maps**
16.1 Boundedness of integral operators, 173
Integral operators of Hilbert-Schmidt type—Integral operators of Holmgren type
16.2 The convexity theorem of Marcel Riesz, 177
16.3 Examples of bounded integral operators, 180
The Fourier transform, Parseval's theorem and Hausdorff-Young inequality—The Hilbert transform—The Laplace transform—The Hilbert-Hankel transform
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.4</td>
<td>Solution operators for hyperbolic equations</td>
<td>186</td>
</tr>
<tr>
<td>16.5</td>
<td>Solution operator for the heat equation</td>
<td>188</td>
</tr>
<tr>
<td>16.6</td>
<td>Singular integral operators, pseudodifferential operators and Fourier integral operators</td>
<td>190</td>
</tr>
<tr>
<td>17.</td>
<td>Banach Algebras and their Elementary Spectral Theory</td>
<td>192</td>
</tr>
<tr>
<td>17.1</td>
<td>Normed algebras</td>
<td>192</td>
</tr>
<tr>
<td></td>
<td>Invertible elements—Resolvent set and spectrum—Resolvent—Spectral radius</td>
<td></td>
</tr>
<tr>
<td>17.2</td>
<td>Functional calculus</td>
<td>197</td>
</tr>
<tr>
<td></td>
<td>Spectral mapping theorem—Projections</td>
<td></td>
</tr>
<tr>
<td>18.</td>
<td>Gelfand's Theory of Commutative Banach Algebras</td>
<td>202</td>
</tr>
<tr>
<td></td>
<td>Homomorphisms into C—Maximal ideals—Mazur’s lemma—The spectrum as the range of homomorphisms—The spectral</td>
<td></td>
</tr>
<tr>
<td></td>
<td>mapping theorem revisited—The Gelfand representation—Gelfand topology</td>
<td></td>
</tr>
<tr>
<td>19.</td>
<td>Applications of Gelfand's Theory of Commutative Banach Algebras</td>
<td>210</td>
</tr>
<tr>
<td>19.1</td>
<td>The algebra $C(S)$</td>
<td>210</td>
</tr>
<tr>
<td>19.2</td>
<td>Gelfand compactification</td>
<td>210</td>
</tr>
<tr>
<td>19.3</td>
<td>Absolutely convergent Fourier series</td>
<td>212</td>
</tr>
<tr>
<td>19.4</td>
<td>Analytic functions in the closed unit disk</td>
<td>213</td>
</tr>
<tr>
<td></td>
<td>Analytic functions in the closed polydisk</td>
<td></td>
</tr>
<tr>
<td>19.5</td>
<td>Analytic functions in the open unit disk</td>
<td>214</td>
</tr>
<tr>
<td>19.6</td>
<td>Wiener's Tauberian theorem</td>
<td>215</td>
</tr>
<tr>
<td>19.7</td>
<td>Commutative B^*-algebras</td>
<td>221</td>
</tr>
<tr>
<td></td>
<td>Historical note</td>
<td>224</td>
</tr>
<tr>
<td>20.</td>
<td>Examples of Operators and Their Spectra</td>
<td>226</td>
</tr>
<tr>
<td>20.1</td>
<td>Invertible maps</td>
<td>226</td>
</tr>
<tr>
<td></td>
<td>Boundary points of the spectrum</td>
<td></td>
</tr>
<tr>
<td>20.2</td>
<td>Shifts</td>
<td>229</td>
</tr>
<tr>
<td>20.3</td>
<td>Volterra integral operators</td>
<td>230</td>
</tr>
<tr>
<td>20.4</td>
<td>The Fourier transform</td>
<td>231</td>
</tr>
<tr>
<td>21.</td>
<td>Compact Maps</td>
<td>233</td>
</tr>
<tr>
<td>21.1</td>
<td>Basic properties of compact maps</td>
<td>233</td>
</tr>
<tr>
<td></td>
<td>Compact maps form a two-sided ideal—Identity plus compact map has index zero</td>
<td></td>
</tr>
</tbody>
</table>
21.2 The spectral theory of compact maps, 238
 The transpose of a compact operator is compact—The Fredholm alternative
 Historical note, 244

22. **Examples of Compact Operators** 245
 22.1 Compactness criteria, 245
 Arzela-Ascoli compactness criterion—Rellich compactness criterion
 22.2 Integral operators, 246
 Hilbert-Schmidt operators
 22.3 The inverse of elliptic partial differential operators, 249
 22.4 Operators defined by parabolic equations, 250
 22.5 Almost orthogonal bases, 251

23. **Positive compact operators** 253
 23.1 The spectrum of compact positive operators, 253
 23.2 Stochastic integral operators, 256
 Invariant probability density
 23.3 Inverse of a second order elliptic operator, 258

24. **Fredholm's Theory of Integral Equations** 260
 24.1 The Fredholm determinant and the Fredholm resolvent, 260
 The spectrum of Fredholm operators—A trace formula for Fredholm operators
 24.2 The multiplicative property of the Fredholm determinant, 268
 24.3 The Gelfand-Levitan-Marchenko equation and Dyson's formula, 271

25. **Invariant Subspaces** 275
 25.1 Invariant subspaces of compact maps, 275
 The von Neumann-Aronszajn-Smith theorem
 25.2 Nested invariant subspaces, 277
 Ringrose's theorem—Unicellular operators: the Brodsky-Donoghue theorem—The Robinson-Bernstein and Lomonsov theorems—Enflo's example

26. **Harmonic Analysis on a Halfline** 284
 26.1 The Phragmén-Lindelöf principle for harmonic functions, 284
CONTENTS

26.2 An abstract Pragmén-Lindelöf principle, 285
 Interior compactness
26.3 Asymptotic expansion, 297
 Solutions of elliptic differential equations in a half-cylinder

27. Index Theory 300
 27.1 The Noether index, 301
 Pseudoinverse—Stability of index—Product formula—
 Hörmander’s stability theorem
 Historical note, 305
27.2 Toeplitz operators, 305
 Index-winding number—The inversion of Toeplitz operators—
 Discontinuous symbols—Matrix Toeplitz operators
27.3 Hankel operators, 312

28. Compact Symmetric Operators in Hilbert Space 315
 Variational principle for eigenvalues—Completeness of
 eigenfunctions—The variational principles of Fisher and
 Courant—Functional calculus—Spectral theory of compact
 normal operators—Unitary operators

29. Examples of Compact Symmetric Operators 323
 29.1 Convolution, 323
29.2 The inverse of a differential operator, 326
29.3 The inverse of partial differential operators, 327

30. Trace Class and Trace Formula 329
 30.1 Polar decomposition and singular values, 329
30.2 Trace class, trace norm, and trace, 330
 Matrix trace
30.3 The trace formula, 334
 Weyl’s inequalities—Lidskii’s theorem
30.4 The determinant, 341
30.5 Examples and counterexamples of trace class operators, 342
 Mercer’s theorem—The trace of integral operators—A Volterra
 integral operator—The trace of the powers of an operator
30.6 The Poisson summation formula, 348
 Convolution on S^1 and the convergence of Fourier series—The Selberg trace formula

30.7 How to express the index of an operator as a difference of traces, 349

30.8 The Hilbert-Schmidt class, 352
 Relation of Hilbert-Schmidt class and trace class

30.9 Determinant and trace for operator in Banach spaces, 353

31. **Spectral Theory of Symmetric, Normal, and Unitary Operators** 354

31.1 The spectrum of symmetric operators, 356
 Reality of spectrum—Upper and lower bounds for the spectrum—Spectral radius

31.2 Functional calculus for symmetric operators, 358
 The square root of a positive operator—Polar decomposition of bounded operators

31.3 Spectral resolution of symmetric operators, 361
 Projection-valued measures

31.4 Absolutely continuous, singular, and point spectra, 364

31.5 The spectral representation of symmetric operators, 364
 Spectral multiplicity—Unitary equivalence

31.6 Spectral resolution of normal operators, 370
 Functional calculus—Commutative B^*-algebras

31.7 Spectral resolution of unitary operators, 372
 Historical note, 375

32. **Spectral Theory of Self-Adjoint Operators** 377

 The Hellinger-Toeplitz theorem—Definition of self-adjointness—Domain

32.1 Spectral resolution, 378
 Sharpening of Herglotz's theorem—Cauchy transform of measures—The spectrum of a self-adjoint operator—Representation of the resolvent as a Cauchy transform—Projection-valued measures

32.2 Spectral resolution using the Cayley transform, 389

32.3 A functional calculus for self-adjoint operators, 390
33. Examples of Self-Adjoint Operators 394

33.1 The extension of unbounded symmetric operators, 394
Closure of a symmetric operator

33.2 Examples of the extension of symmetric operators; deficiency indices, 397
The operator \(i(d/dx) \) on \(C^1_0(\mathbb{R}), C^1_0(\mathbb{R}+), \) and \(C^1_0(0, 1) \)—
Deficiency indices and von Neumann's theorem—Symmetric operators in a real Hilbert space

33.3 The Friedrichs extension, 402
Semibounded symmetric operators—Symmetric ODE—Symmetric elliptic PDE

33.4 The Rellich perturbation theorem, 406
Self-adjointness of Schrödinger operators with singular potentials

33.5 The moment problem, 410
The Hamburger and Stieltjes moment problems—Uniqueness, or not, of the moment problem
Historical note, 414

34. Semigroups of Operators 416

34.1 Strongly continuous one-parameter semigroups, 418
Infinitesimal generator—Resolvent—Laplace transform

34.2 The generation of semigroups, 424
The Hille-Yosida theorem

34.3 The approximation of semigroups, 427
The Lax equivalence theorem—Trotter's product formula—Strang's product formula

34.4 Perturbation of semigroups, 432
Lumer-Phillip's theorem—Trotter's perturbation theorem

34.5 The spectral theory of semigroups, 434
Phillip's spectral mapping theorem—Adjoint semigroups—Semigroups of eventually compact operators

35. Groups of Unitary Operators 440

35.1 Stone's theorem, 440
Generation of unitary groups—Positive definiteness and Bochner's theorem

35.2 Ergodic theory, 443
von Neumann's mean ergodic theorem
35.3 The Koopman group, 445
Volume-preserving flows—Metric transitivity—Time average—Space average
35.4 The wave equation, 447
In full space-time—in the exterior of an obstacle
35.5 Translation representation, 448
Sinai’s theorem—Incoming subspaces—Solution of wave equation in odd number of space dimensions—Wave propagation outside an obstacle
35.6 The Heisenberg commutation relation, 455
The uncertainty principle—Weyl’s form of the commutation relation—von Neumann’s theorem on pairs of operators that satisfy the commutation relation
Historical note, 459

36. Examples of Strongly Continuous Semigroups 461
36.1 Semigroups defined by parabolic equations, 461
36.2 Semigroups defined by elliptic equations, 462
36.3 Exponential decay of semigroups, 465
36.4 The Lax-Phillips semigroup, 470
36.5 The wave equation in the exterior of an obstacle, 472

37. Scattering Theory 477
37.1 Perturbation theory, 477
37.2 The wave operators, 480
37.3 Existence of the wave operators, 482
37.4 The invariance of wave operators, 490
37.5 Potential scattering, 490
37.6 The scattering operator, 491
Historical note, 492
37.7 The Lax-Phillips scattering theory, 493
37.8 The zeros of the scattering matrix, 499
37.9 The automorphic wave equation, 500
—Faddeev and Pavlov’s theory—The Riemann hypothesis

38. A Theorem of Beurling 513
38.1 The Hardy space, 513
38.2 Beurling’s theorem, 515
Inner and outer factors—Factorization in the algebra of bounded analytic functions
38.3 The Titchmarsh convolution theorem, 523
Historical note, 525

Texts 527

A. **Riesz-Kakutani representation theorem** 529
A.1 Positive linear functionals, 529
A.2 Volume, 532
A.3 L as a space of functions, 535
A.4 Measurable sets and measure, 538
A.5 The Lebesgue measure and integral, 541

B. **Theory of distributions** 543
B.1 Definitions and examples, 543
B.2 Operations on distributions, 544
B.3 Local properties of distributions, 547
B.4 Applications to partial differential equations, 554
B.5 The Fourier transform, 558
B.6 Applications of the Fourier transform, 568
B.7 Fourier series, 569

C. **Zorn’s Lemma** 571

Author Index 573

Subject Index 577