Symplectic Twist Maps
Global Variational Techniques

Christophe Golé
Smith College, Northampton, Massachusetts, USA
0 Introduction 1
 1 Fall from Paradise 1
 2 Billiards and Broken Geodesics 4
 3 An Ancestor of Symplectic Topology 8

1 Twist Maps of the Annulus 11
 4 Monotone Twist Maps of the Annulus 11
 A Definitions 11
 B Comments on the Definition 12
 C Twist Maps of the Cylinder 16
 5 Generating Functions and Variational Setting 17
 A Generating Functions 17
 B Variational Principle 18
 C Periodic Orbits 20
 D Rotation Numbers 21

6 Examples 21
 A Standard Map 21
 B Elliptic Fixed Points of Area Preserving Maps 23
 C The Frenkel–Kontorova Model 24
 D Billiard Maps 25

7 The Poincaré–Birkhoff Theorem 27

2 The Aubry–Mather Theorem 31
 8 Introduction 31
 A Motivation And Statement Of The Theorem 31
 B From The Annulus To The Cylinder 33
 9 Cyclically Ordered Sequences And Orbits 34
 10 Minimizing Orbits 36
 11 CO Orbits Of All Rotation Numbers 40
 A Existence Of CO Periodic Orbits 40
 B Existence of CO Orbits Of Irrational Rotation Numbers 41
 12 Aubry-Mather Sets 41
Content

13 Appendix: Cyclically Ordered Sequences and Circle Maps 46
 A Proofs Of Lemmas 9.1 And 9.2 47
 B Dynamics Of Circle Homeomorphisms 49

3 Ghost Circles 53

14 Gradient Flow of the Action 54
 A Definition of the Flow 54
 B Order Properties of the Flow 55

15 The Gradient Flow and the Aubry-Mather Theorem 57

16 Ghost Circles 59

17 Construction of Ghost Circles 63
 A Ghost Circles Through Any Aubry-Mather Sets 63
 B Smooth, Rational Ghost Circles 64

18 Construction of Disjoint Ghost Circles 67

19 Proof of Lemma 18.5 70

20 Proof of Theorem 18.1 73
 A Rational \(C_\omega \)'s 74
 B Irrational \(C_\omega \)'s 74

21* Remarks and Applications 78
 A Remarks 78
 B Approximate Action-Angle Variables for an Arbitrary Twist Map 79
 C* Partition for Transport 80
 D* An Extension of Aubry's Fundamental Lemma 81

22 Proofs of Monotonicity and of the Sturmian Lemma 82
 A Proof of Strict Monotonocity 82
 B Proof of the Sturmian Lemma 83

4 Symplectic Twist Maps 87

23 Symplectic Twist Maps of \(T^n \times \mathbb{R}^n \) 88
 A Definition 88
 B Comments on the Definition 89
 C The Variational Setting 89

24 Examples 91
 A The Generalized Standard Map 91
 B Hamiltonian Systems 92
 C Elliptic Fixed Points 93
25 More on Generating Functions
 A Homeomorphism Between Twist Maps and Generating Functions 95
 B Local vs. Global Twist 96
 C Differential of the Map vs. Generating Function 98

26 Symplectic Twist Maps on General Cotangent Bundles of Compact Manifolds
 A Definition 99
 B Maps vs. Functions, Revisited 100
 C Examples 101

5 Periodic Orbits for Symplectic Twist Maps of $\mathbb{T}^n \times \mathbb{R}^n$
27 Presentation Of The Results
 A Periodic Orbits and Rotation Vectors 103
 B Theorems of Existence of Periodic Orbits 104
 C Comments on the Asymptotic Conditions 105
 D History 106

28 Finite Dimensional Variational Setting

29 Second Variation and Nondegenerate Periodic Orbits

30 The Coercive Case

31 Asymptotically Linear Systems

32 Ghost Tori

33 Hyperbolicity Vs. Action Minimizers

6 Invariant Manifolds
34 The Theory of Kolmogorov–Arnold–Moser
35 Properties of Invariant Tori
 A Recurrent Invariant Toric Graphs are Lagrangian
 B Orbits on Lagrangian Invariant Tori Are Minimizers
 C Birkhoff's Graph Theorem
 D* Aubry-Mather Theorem Via Trimming
 E* Generalizations of Birkhoff's Graph Theorem to Higher Dimensions

36 (Un)Stable Manifolds and Heteroclinic orbits
 A (Un)stable Manifolds
 B Variational Approach to Heteroclinic Orbits
 C Splitting of Separatrices and Poincaré–Melnikov Function

37* Instability, Transport and Diffusion
 A* Some Questions About Stability
7 Hamiltonian Systems vs. Twist Maps

38 Case Study: The Geodesic Flow

A A Few Facts About Riemannian Geometry
B The Geodesic Flow as a Twist Map
C The Method of Broken Geodesics
D The Standard Map on Cotangent Bundles of Hyperbolic Manifolds

39 Decomposition of Hamiltonian Maps into Twist Maps

A Legendre Condition Vs. Twist Condition
B Lagrangian Formulation Of Theorem 39.1
C Global Twist: The Case of the Torus
D Decomposition of Hamiltonian Maps into Twist Maps

40 Return Maps in Hamiltonian Systems

41 Suspension of Symplectic Twist Maps by Hamiltonian Flows

A Suspension with Fiber Convexity
B Suspension without Convexity

8 Periodic Orbits for Hamiltonian Systems

42 Periodic Orbits in the Cotangent of the n-Torus

A Optical Hamiltonians
B Asymptotically Quadratic Hamiltonians
C Remarks About the Above Results

43 Periodic Orbits in General Cotangent Spaces

A The Discrete Variational Setting
B The Isolating Block
C End of Proof of Theorem 43.1
D Periodic Orbits of Different Homotopy Classes

44 Linking of Spheres

9 Generalizations of the Aubry-Mather Theorem

45* Theory for Functions on Lattices and PDE's

A* Functions on Lattices
B* PDE's
C* Laminations by Minimal Surfaces
A2 Some Topological Tools
 59* Hands on Introduction to Homology Theory
 A* Finite Cell Complexes
 B* Cellular Homology
 C* Cohomology
 60* Morse Theory
 61 Controlling the Topology of Invariant Sets
 62 Topological Proofs
 A Proof of the Cuplength Estimate in Theorem 61.2
 B* The Betti Number Estimate of Theorem 61.2 and Conley's Theory
 C Floer's Lemma
 D Proof of Proposition 61.4
 E* Floer's Theorem of Global Continuation of Hyperbolic Invariant Sets
 63 Generating Phases Quadratic at Infinity
 Generating Phases on Product Spaces
 Generating Phases on Vector Bundles
 64* Covering Spaces, Lifts and Fundamental Group

Bibliography

Index