Stochastic Integration with Jumps

KLAUS BICHTELER

University of Texas at Austin
Contents

Preface ... xi

Chapter 1 Introduction ... 1

1.1 Motivation: Stochastic Differential Equations 1
The Obstacle, Ito's Way Out of the Quandary 5, Summary: The Task Ahead 6

1.2 Wiener Process .. 9
Existence of Wiener Process 11, Uniqueness of Wiener Measure 14, Non-
Differentiability of the Wiener Path 17, Supplements and Additional Exercises 18

1.3 The General Model ... 20

Chapter 2 Integrators and Martingales 43

Step Functions and Lebesgue–Stieltjes Integrators on the Line 43

2.1 The Elementary Stochastic Integral 46
Elementary Stochastic Integrands 46, The Elementary Stochastic Integral 47, The Elementary Integral and Stopping Times 47, L^p-Integrators 49, Local Properties 51

2.2 The Semivariations ... 53
The Size of an Integrator 54, Vectors of Integrators 56, The Natural Conditions 56

2.3 Path Regularity of Integrators 58
Right-Continuity and Left Limits 58, Boundedness of the Paths 61, Redefinition of Integrators 62, The Maximal Inequality 63, Law and Canonical Representation 64

2.4 Processes of Finite Variation 67
Decomposition into Continuous and Jump Parts 69, The Change-of-Variable Formula 70

2.5 Martingales .. 71
Submartingales and Supermartingales 73, Regularity of the Paths: Right-
Continuity and Left Limits 74, Boundedness of the Paths 76, Doob's Optional Stopping Theorem 77, Martingales Are Integrators 78, Martingales in L^p 80

Chapter 3 Extension of the Integral 87

Daniell's Extension Procedure on the Line 87

3.1 The Daniell Mean .. 88
A Temporary Assumption 89, Properties of the Daniell Mean 90

3.2 The Integration Theory of a Mean 94
Negligible Functions and Sets 95, Processes Finite for the Mean and Defined Almost Everywhere 97, Integrable Processes and the Stochastic Integral 99, Permanence Properties of Integrable Functions 101, Permanence Under Algebraic and Order Operations 101, Permanence Under Pointwise Limits of Sequences 102, Integrable Sets 104
Contents

3.3 Countable Additivity in p-Mean .. 106
The Integration Theory of Vectors of Integrators 109

3.4 Measurability ... 110
Permanence Under Limits of Sequences 111, Permanence Under Algebraic and Order Operations 112, The Integrability Criterion 113, Measurable Sets 114

3.5 Predictable and Previsible Processes 115
Predictable Processes 115, Previsible Processes 118, Predictable Stopping Times 118, Accessible Stopping Times 122

3.6 Special Properties of Daniell’s Mean 123
Maximality 123, Continuity Along Increasing Sequences 124, Predictable Envelopes 125, Regularity 128, Stability Under Change of Measure 129

3.7 The Indefinite Integral .. 130

3.8 Functions of Integrators ... 145

3.9 Itô’s Formula ... 157
The Doléans–Dade Exponential 159, Additional Exercises 161, Girsanov Theorems 162, The Stratonovich Integral 168

3.10 Random Measures .. 171
σ-Additivity 174, Law and Canonical Representation 175, Example: Wiener Random Measure 177, Example: The Jump Measure of an Integrator 180, Strict Random Measures and Point Processes 183, Example: Poisson Point Processes 184, The Girsanov Theorem for Poisson Point Processes 185

Chapter 4 Control of Integral and Integrator 187

4.1 Change of Measure — Factorization 187
A Simple Case 187, The Main Factorization Theorem 191, Proof for $p > 0$ 195, Proof for $p = 0$ 205

4.2 Martingale Inequalities ... 209
Fefferman’s Inequality 209, The Burkholder–Davis–Gundy Inequalities 213, The Hardy Mean 216, Martingale Representation on Wiener Space 218, Additional Exercises 219

4.3 The Doob–Meyer Decomposition ... 221

4.4 Semimartingales .. 232
Integrators Are Semimartingales 233, Various Decompositions of an Integrator 234

4.5 Previsible Control of Integrators .. 238
Controlling a Single Integrator 239, Previsible Control of Vectors of Integrators 246, Previsible Control of Random Measures 251

4.6 Lévy Processes .. 253
The Lévy–Khintchine Formula 257, The Martingale Representation Theorem 261, Canonical Components of a Lévy Process 265, Construction of Lévy Processes 267, Feller Semigroup and Generator 268
Chapter 5 Stochastic Differential Equations 271

5.1 Introduction ... 271
First Assumptions on the Data and Definition of Solution 272, Example: The Ordinary Differential Equation (ODE) 273, ODE: Flows and Actions 278, ODE: Approximation 280

5.2 Existence and Uniqueness of the Solution 282

5.3 Stability: Differentiability in Parameters 298
The Derivative of the Solution 301, Pathwise Differentiability 303, Higher Order Derivatives 305

5.4 Pathwise Computation of the Solution 310

5.5 Weak Solutions .. 330
The Size of the Solution 332, Existence of Weak Solutions 333, Uniqueness 337

5.6 Stochastic Flows .. 343
Stochastic Flows with a Continuous Driver 343, Drivers with Small Jumps 346, Markovian Stochastic Flows 347, Markovian Stochastic Flows Driven by a Lévy Process 349

5.7 Semigroups, Markov Processes, and PDE 351
Stochastic Representation of Feller Semigroups 351

Appendix A Complements to Topology and Measure Theory 363

A.1 Notations and Conventions 363
A.2 Topological Miscellanea .. 366

A.3 Measure and Integration ... 391

A.4 Weak Convergence of Measures 421
Uniform Tightness 425, Application: Donsker’s Theorem 426

A.5 Analytic Sets and Capacity 432
Applications to Stochastic Analysis 436, Supplements and Additional Exercises 440

A.6 Suslin Spaces and Tightness of Measures 440
Polish and Suslin Spaces 440

A.7 The Skorohod Topology .. 443

A.8 The L^p-Spaces .. 448
Marcinkiewicz Interpolation 453, Khintchine’s Inequalities 455, Stable Type 458
A.9 Semigroups of Operators .. 463
Resolvent and Generator 463, Feller Semigroups 465, The Natural Extension of a
Feller Semigroup 467
Appendix B Answers to Selected Problems 470
References .. 477
Index of Notations .. 483
Index .. 489
Answers http://www.ma.utexas.edu/users/cup/Answers
Full Indexes http://www.ma.utexas.edu/users/cup/Indexes
Errata http://www.ma.utexas.edu/users/cup/Errata