An Introduction to Radio Astronomy
Second edition

Bernard F. Burke and Francis Graham-Smith
Contents

Preface to the second edition .. page x

1 Introduction .. 1
 1.1 The role of radio observations in astronomy 1
 1.2 Thermal and non-thermal processes 4
 1.3 Radiation processes and radio observations 6

2 Radio telescopes as antennas 8
 2.1 Beamwidth, effective area and the jansky 8
 2.2 Antenna temperature .. 10
 2.3 Electromagnetic waves 13
 2.4 Polarization: the Stokes parameters 16

3 Signal detection and noise 21
 3.1 Gaussian random noise 21
 3.2 Band-limited noise .. 23
 3.3 Detection and integration 25
 3.4 Radiometer principles 27
 3.5 Radiometers in practice 30
 3.6 Spectrometry .. 34
 3.7 Cross-correlation radiometry: interferometry 38

4 Single-aperture radio telescopes 40
 4.1 Angular resolution ... 40
 4.2 Steerable radio telescopes 42
 4.3 Phased arrays .. 42
 4.4 Aperture distributions and beam patterns 44
 4.5 Feed systems .. 48
 4.6 Surface accuracy .. 51
 4.7 Millimetre and sub-millimetre telescopes 53
Contents

4.8 Smoothing: the response to a sky brightness distribution 54

5 The two-element interferometer 56

5.1 The basic two-element interferometer 57
5.2 Interferometers with finite bandwidth 61
5.3 Interferometers and finite source size 63
5.4 Fourier transforms and the u,v-plane 65
5.5 Practical considerations 67
5.6 Very-long-baseline interferometry (VLBI) 69
5.7 Beam switching 73
5.8 The interferometer in geodesy and astrometry 74
5.9 Interferometry at millimetre wavelengths 75
5.10 Optical interferometry 77

6 Aperture synthesis 79

6.1 Interferometer arrays 80
6.2 The spectral sensitivity function 82
6.3 Filling the u,v-plane 85
6.4 Frequency diversity 90
6.5 Wide fields and wide bandwidths 90
6.6 Synthesis imaging 92
6.7 VLBI arrays 94
6.8 Calibration of interferometer data 96
6.9 Self-calibration 97
6.10 Signal-to-noise limitations and dynamic range 99
6.11 Aperture synthesis at millimetre wavelengths 102
6.12 Space VLBI 103

7 Radiation, propagation and absorption of radio waves 104

7.1 Radiative transfer 105
7.2 Synchrotron radiation 106
7.3 A power-law energy distribution 110
7.4 Synchrotron self-absorption 113
7.5 Free-free radiation 113
7.6 Radio spectral lines 116
7.7 Masers 118
7.8 Propagation through ionized gas 120
7.9 Faraday rotation 121
7.10 Scintillation 123
7.11 Propagation in the Earth’s atmosphere 125
Contents

8 Galactic continuum radiation 128
 8.1 Stars, dust and gas 129
 8.2 Varieties of galaxies 132
 8.3 Measurement of sky brightness temperature 133
 8.4 The spectrum of the Galactic continuum 134
 8.5 Synchrotron radiation: emissivity 137
 8.6 The energy spectrum of cosmic rays 139
 8.7 Polarization 141
 8.8 Faraday rotation: the Galactic magnetic field 142
 8.9 Loops and spurs 148
 8.10 The Local Bubble 150
 8.11 Other galaxies 151

9 The interstellar medium 153
 9.1 Temperature states of the ISM 153
 9.2 Neutral hydrogen (H I) 154
 9.3 Ionized hydrogen (H II) 159
 9.4 The hot ionized component 162
 9.5 Heating and cooling mechanisms 162
 9.6 Dense molecular clouds 164
 9.7 Radio molecular lines 165
 9.8 Supernova remnants (SNRs) 167

10 Galactic dynamics 175
 10.1 Atoms and molecules in the Milky Way 176
 10.2 The circular approximation 179
 10.3 Spiral structure 183
 10.4 Non-circular motions 188
 10.5 The distribution of matter 193
 10.6 The Galactic Centre 197
 10.7 The scale of the Galaxy 201

11 Stars 205
 11.1 Surface brightness 205
 11.2 The Sun 208
 11.3 The planets 211
 11.4 Circumstellar envelopes 215
 11.5 Circumstellar masers 217
 11.6 The silicon oxide masers 218
 11.7 The water masers 218
11.8 The hydroxyl masers 219
11.9 Classical novae 221
11.10 Non-thermal radiation from binaries and flare stars 226
11.11 Recurrent novae 228
11.12 X-ray binaries: Cyg X-3 and SS 433 229
11.13 Superluminal motion 230

12 Pulsars 236
12.1 Neutron stars 236
12.2 Neutron star structure 237
12.3 Rotational slowdown 239
12.4 Rotational behaviour of the Crab and Vela pulsars 240
12.5 Superfluid rotation 243
12.6 Radio and optical emission from pulsars 246
12.7 The radiation mechanism 251
12.8 The population and evolution of pulsars 253
12.9 Searches and surveys; the constraints 255
12.10 Trigonometric distance and proper motion 258
12.11 X-ray pulsars 259
12.12 Magnetic dipole moments 260
12.13 Binary orbits and interactions 263
12.14 Tests of general relativity 265

13 Radio galaxies and quasars 268
13.1 Radio emission from normal galaxies 270
13.2 Spectra and dimensions 272
13.3 Structures 273
13.4 A simple model of active galactic nuclei 279
13.5 The accretion disc 281
13.6 The torus 282
13.7 The core and the jets 284
13.8 Spectra of quasars and other AGNs 287
13.9 The radio brightness temperature of the core 289
13.10 Superluminal motion 290
13.11 The radio jets and lobes 292
13.12 The kiloparsec scale radio sources 293

14 Cosmology and the cosmic microwave background 296
14.1 The Hubble flow 297
14.2 A simple Newtonian model 298
14.3 Relativistic cosmology 301
Contents

14.4 Two fundamental problems of cosmology 303
14.5 Big Bang cosmology 305
14.6 The cosmic microwave background 308
14.7 Anisotropy and distortions of the CMB 311

15 Cosmology: discrete radio sources and gravitational lenses 318
15.1 Evolution and the radio source counts 318
15.2 Angular diameter and expansion velocity 324
15.3 Gravitational lensing 326
15.4 Observations of lenses: rings, quads and others 333
15.5 Weak gravitational imaging 337
15.6 Time delay 340

16 The place of radio in astronomy 341
16.1 The cosmic microwave background 342
16.2 The interstellar medium 343
16.3 Angular resolution: stars and quasars 344
16.4 Future developments 346
16.5 The protection of radio frequencies in astronomy 347

Appendices 351

Appendix 1 Fourier transforms 351
A1.1 Definitions 351
A1.2 Convolution and cross-correlation 355
A1.3 Two or more dimensions 358

Appendix 2 Celestial coordinates, distance and time 360
A2.1 The celestial coordinate system 360
A2.2 The astronomical distance scale 363
A2.3 Time 364

Appendix 3 The origins of radio astronomy 367

References 374
Index 389