Restricted Orbit Equivalence for Actions of Discrete Amenable Groups

Janet Whalen Kammeyer
Daniel J. Rudolph
Contents

1 Introduction

1.1 Overview
1.2 A roadmap to the text
1.3 History and references
1.4 Directions for further study

2 Definitions and Examples

2.1 Orbits, arrangements and rearrangements
2.2 Definition of a size and m-equivalence
2.3 Seven examples

3 The Ornstein-Weiss Machinery

4 Copying Lemmas

5 m-entropy

6 m-joinings

6.1 Polish topologies

6.1.1 Overview of the topology on m-joinings
6.2 Modeling pairs of arrangements
6.3 Modeling rearrangements
6.4 Adding sizes to the picture
6.5 More orbit joinings and m-joinings

7 The Equivalence Theorem

7.1 Perturbing an m-equivalence
7.2 The \overline{m}-distance and m-finitely determined processes
7.3 The equivalence theorem