Oscillating Patterns in Image Processing and Nonlinear Evolution Equations

The Fifteenth
Dean Jacqueline B. Lewis
Memorial Lectures

Yves Meyer
Contents

Preface ix

Chapter 1. Still images compression 1

1.1. Introduction 1

1.2. A first glance at compression and denoising. The supernova SN1987A 1

1.3. Atomic decompositions and modeling 3

1.4. Wavelets and still image compression: some success stories 8

1.5. Sampling, quantization, thresholding and compression 9

1.6. A first visit to \(u + v \) models for still images 13

1.7. Best-basis algorithms in signal processing 15

1.8. The old JPEG 17

1.9. Karhunen-Loève expansions 18

1.10. An example where the Karhunen-Loève approach is ineffective: the ramp function 19

1.11. A second visit to \(u + v \) image models 22

1.12. The space \(BV \) of functions with bounded variation in the plane 23

1.13. The Osher-Rudin model 27

1.14. The mathematical properties of the Osher-Rudin model 30

1.15. Modeling textures 42

1.16. Wavelet shrinkage 45

1.17. Littlewood-Paley analysis 50

1.18. A survey of wavelet analysis 57

1.19. Littlewood-Paley analysis and wavelet analysis 65

1.20. Quantization issues: Fourier series vs. wavelet series 66

1.21. Fourier series vs. wavelet series: expansions of \(BV \) functions 67

Chapter 2. The role of oscillations in some nonlinear PDE's 71

2.1. Introduction 71

2.2. Improved Gagliardo-Nirenberg inequalities 72

2.3. Improved Poincaré estimates 79

2.4. Wavelet coefficients of integrable functions 80

2.5. A first model case: the nonlinear heat equation 81

2.6. The Navier-Stokes equations 84

2.7. Modeling coherent structures 88

2.8. The nonlinear Schrödinger equation 91

Chapter 3. Frequency modulated signals, chirps and the Virgo program 93

3.1. Introduction 93

3.2. Hölder classes with negative exponents 96

3.3. Infinitely oscillating functions 101
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4</td>
<td>A first definition of n-dimensional chirps</td>
<td>103</td>
</tr>
<tr>
<td>3.5</td>
<td>A second definition of chirps</td>
<td>104</td>
</tr>
<tr>
<td>3.6</td>
<td>Jaffard's criticism</td>
<td>105</td>
</tr>
<tr>
<td>3.7</td>
<td>Chirps and two-microlocal spaces</td>
<td>107</td>
</tr>
<tr>
<td>3.8</td>
<td>Wavelets and chirps</td>
<td>109</td>
</tr>
<tr>
<td>3.9</td>
<td>A function proposed by Riemann contains infinitely many chirps</td>
<td>111</td>
</tr>
<tr>
<td>3.10</td>
<td>A generalized Riemann function</td>
<td>114</td>
</tr>
<tr>
<td></td>
<td>Conclusion</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td>Bibliography</td>
<td>119</td>
</tr>
</tbody>
</table>