Contents

Preface xix

Part I OBSERVATIONS OF NON-EVOLVED BINARIES

1 Binary Statistics in Clusters and the Field 3
Jean-Claude Mermilliod
1 Introduction 3
2 Field stars 5
3 Globular clusters 6
4 Pre-main-sequence stars 6
5 NGC 6231 and O-type stars 7
6 G-type stars in open clusters 8
7 Cluster red giants 9
8 Recent results on MS binary frequency 12
9 Discussion 15

2 Statistics of non evolved binaries with a B Type Primary 21
Walter van Rensbergen
1 Introduction 21
2 The observed mass ratio distribution 21
3 The theoretical mass-ratio distribution 24
4 Modeling the observed population of SBs 28
5 Comparing models with observations 31
6 Estimating the fraction of binaries 34

3 Massive Binaries 37
Brian D. Mason, Douglas R. Gies, William I. Hartkopf
1 O Stars 38
1.1 Astrometry Update
1.2 Distances to O Stars
1.3 New Astrometric Work
1.4 Binary Frequency
1.5 Other Statistics
2 WR Stars
3 B Giants and Supergiants
4 Future Work
4.1 the USNO CMOS system
4.2 Adaptive Optics of Massive Stars
4.3 Optical Interferometry
4.4 FAME

Part II OBSERVATIONS OF EVOLVED BINARIES

4 Cataclysmic Variables, Super-Soft Sources and Double-Degenerates

Tom R. Marsh
1 Introduction
2 Accretion onto White Dwarfs
3 Cataclysmic Variable Stars
3.1 General Background
3.2 CVs as Type Ia progenitors
3.3 How many CVs?
4 Super-Soft X-ray Sources
4.1 Evolutionary State of the Super-Soft Sources
4.2 The Numbers of Super-Soft Sources
5 Double-Degenerate Binary Stars
5.1 Finding Double Degenerates
5.2 Observed Properties of Double Degenerates
5.3 The Numbers of Double Degenerates
5.4 sdB/white dwarf binaries
6 Summary

5 Observing Globular Cluster Binaries With Gravitational Radiation

Matthew Benacquista
1 Introduction
2 The LISA Mission
3 Signal Analysis
4 Binary Population Requirements
5 Results and Conclusions
The Algol-Type Binaries

Geraldine J. Peters

1 Introduction
2 The Accretion Disk
3 The Gas Stream
4 The High Temperature Accretion Region
5 Domains of Outflow
6 Putting it All Together
7 Concluding Remarks

Be stars: Single and Binary Components

Douglas R. Gies

1 Introduction to Be Stars
2 Binary Evolution Models
3 Observational Results
 3.1 Known Binaries Among Classical Be Stars
 3.2 Be + Helium Star Binaries: φ Persei and 59 Cygni
 3.3 Be + White Dwarf Binaries
 3.4 Be + Neutron Star Binaries
 3.5 Runaway Be stars
4 Conclusions

Chemically-peculiar Red Giants: Uncovering the Binary Intruders

Sophie Van Eck, A. Jorissen

1 Introduction
2 Orbital elements of extrinsic stars
3 Luminosities of S stars
4 The proportion of extrinsic stars among S stars
5 Conclusions

Eccentricities of the Barium Stars

John Lattanzio, Amanda Karakas, Christopher Tout

1 Introduction and Observations
2 Model Parameters
3 Results and Discussion
4 Conclusions

High-Mass X-Ray Binaries and OB-runaway Stars

Lex Kaper

1 The evolution of massive binaries
2 Observations and Data Reduction 175
3 Discussion and Results 178
4 Conclusions 178

Part III STARBURSTS, SUPERNOVAE, STELLAR WINDS

15 High Energy Emission from Starburst Galaxies: The Role of X-Ray Binaries 183
Ian R. Stevens
1 Introduction 183
 1.1 The New X-ray Satellites 184
2 X-ray Properties of Starbursts 185
 2.1 Extended X-ray Emission 185
 2.2 Point Source X-ray Emission 186
 2.3 X-ray Spectral Characteristics 187
3 Case Studies 187
 3.1 M82: Prototypical Starburst 187
 3.2 Henize 2-10: A Wolf-Rayet Galaxy 189
 3.3 NGC 838: A Starburst in a Group 190
 3.4 NGC 253: Another Prototypical Starburst 191
4 The Expected Number of Luminous HMXBs in Starbursts 192
 4.1 Galactic Extrapolations 192
 4.2 For Starburst Galaxies 193
 4.3 The Case Studies 193
5 Summary and Conclusions 194
 5.1 Stating the Obvious 194
 5.2 The Negative View 194
 5.3 The Positive View 195

16 Supernova Types and Rates 199
Enrico Cappellaro, Massimo Turatto
1 Introduction 199
2 Basic SN types 201
3 Type Ia SNe 201
4 Type II SNe 204
5 Type Ib/c SNe 208
6 SN rates 211

17 Stellar Winds from Massive Stars 215
Paul A. Crowther
1 Introduction 215
2 Hot Star wind diagnostics 216
2.1 UV and far-UV spectroscopy 217
2.2 Optical and near-IR spectroscopy 217
2.3 IR–radio continua 218
3 Results for OBA stars - role of metallicity? 218
 3.1 Terminal Wind Velocities 219
 3.2 Mass-loss rates 219
 3.3 Rotation 221
 3.4 Structure 222
4 Luminous Blue Variables 222
5 Wolf-Rayet stars 223
6 Mass-loss diagnostics in yellow and red supergiants 224

Part IV STELLAR EVOLUTION

18 News on the Evolution of Massive Stars 233
 Andre Maeder
 1 Introduction 233
 2 Rotation versus binary effects 234
 3 Evolution of rotation 236
 4 HR diagram, lifetimes and ages 241
 5 Chemical abundances 242
 6 Wolf–Rayet stars 244
 7 Conclusions 246

19 Massive Close Binaries 249
 Dany Vanbeveren
 1 Introduction 249
 2 Stellar wind formalisms 250
 3 Massive star evolution 252
 3.1 The effect of RSG mass loss 254
 3.2 The effect of WR mass loss 254
 4 Applications 257
 5 Population number synthesis (PNS) of massive stars 260
 5.1 PNS results for O-type stars and WR stars 263
 5.2 PNS results for supernova rates 266
 5.3 PNS results for double compact star binaries 267
 6 Rotation 267

20 Massive Single and Binary Star Models: A Comparison 273
 Norbert Langer, Stephan Wellstein, Alexander Heger
 1 Introduction 273
 2 Main Sequence Stars 275
To form and explode Wolf-Rayet stars 278
Mass limits for the formation of compact objects 280
Spins of compact objects 283

21
Chemical Evolution of Low- and Intermediate-Mass Stars 287
Nami Mowlavi

1 Introduction 287
2 Chemical properties of red giant stars 288
 2.1 Red giant branch stars 289
 2.2 Asymptotic giant branch stars 290
3 Current issues in modeling asymptotic giant branch stars 293
 3.1 Modeling third dredge-up 293
 3.2 S-process nucleosynthesis 295
 3.3 Mass loss 295
4 Conclusions 296

22
The Evolution of Intermediate-Mass Binaries 299
Peter P. Eggleton

1 A large grid of conservative Case A models 299
2 An Initial-Final Mass relation for Early Case B systems 303
3 Case C evolution of Low-Mass Binaries: Spiral-in or not? 304

23
Close Binaries in Triple Systems 311
Ludmila Kiseleva-Eggleton, Peter P. Eggleton

1 Introduction 311
2 The case of SS Lac 313
3 Application to a young Algol-like system 316

Part V POPULATION SYNTHESIS

24
The Population of Cataclysmic Variable Systems 321
Ulrich Kolb

1 Introduction 321
2 Prehistory - a summary 322
3 The period histogram - continuity equation 324
4 Applications 326
 4.1 The age of CVs 326
 4.2 Aluminium-26 327
 4.3 Alternative period gap models 329
 4.4 Nova outbursts and mass transfer spectra 329
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
<th>Sections</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>The impact of new stellar models</td>
<td></td>
<td>5.1 Spectral type vs orbital period/donor mass 5 Period minimum</td>
</tr>
<tr>
<td>6</td>
<td>Conclusions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>The Population of Close Double White Dwarfs in the Galaxy</td>
<td>L.R. Yungelson, G. Nelemans, S.F. Portegies Zwart, F. Verbunt</td>
<td>1 Introduction 2 Observed close double white dwarfs 3 Formation of helium white dwarfs 4 Cooling of white dwarfs and observational selection 5 An overview of the models 6 Models vs. observations 7 Conclusions</td>
</tr>
<tr>
<td>27</td>
<td>Simulating Open Star Clusters</td>
<td>S.F. Portegies Zwart, S.L.W. McMillan, P. Hut, J. Makino</td>
<td>1 Introduction 2 Initial conditions 3 Discussion of the results 3.1 Mass segregation 3.2 Age estimates 3.3 Escaping stars 3.4 Tidal flattening 3.5 Core collapse 3.6 Stellar populations 3.7 Giants and white dwarfs in open clusters</td>
</tr>
</tbody>
</table>
3.8 Comparison with other work

28

Binaries and Globular Cluster Dynamics
Frederic A. Rasio, John M. Fregeau, Kriten J. Joshi

1 Introduction
2 Monte Carlo Simulations of Cluster Dynamics
3 Summary of Recent Results

29

The Effect of Tides and Stellar Dynamics on Binary and Cluster Populations
Onno R. Pols, Jarrod R. Hurley, Christopher A. Tout and Sverre J. Aarseth

1 Introduction
2 Tidal interaction
3 Binary evolution model
4 The effect of tides on binary evolution
5 Blues stragglers in M 67
6 N-body models for M 67
7 Discussion and conclusion

30

Massive Star Population Synthesis of Starbursts
Joris Van Bever, Dany Vanbeveren

1 Introduction
2 Rejuvenation of starbursts
3 Wolf-Rayet emission lines
3.1 Nebular HeII λ4686
3.2 red and blue Wolf-Rayet bumps
4 starbursts and hard X-rays
4.1 The HMXB population
4.2 The YSNR population
4.3 The hard X-ray luminosity of a starburst
5 Conclusions

31

Radioactivities in Population Studies: 26Al and 60Fe from OB Associations
S. Plüschke, R. Diehl, K. Kretschmer, D.H. Hartmann, U. Oberlack

1 Introduction
2 Modelling the OB star Emission
2.1 Release of radioactive Isotopes
2.2 Imparting kinetic Energy to the ISM
2.3 Ionising Radiation
| 32 | Binary Population Synthesis: Methods, Normalization and Surprises | 447 |
| Vassiliki Kalogera, Krzysztof Belczynski |
1	Introduction	447
2	Population Synthesis Methods	
2.1	Evolution of Distribution Function in Phase Space	449
2.2	Monte Carlo Techniques	450
3	Population Synthesis of Double Compact Objects: Predicted Rates	
3.1	Observational Constraints	452
3.2	Model Assumptions	452
3.3	Most Important Model Parameters and their Effects	455
4	New Class of Close NS–NS: Without NS Recycling	456
4.1	Model Calculations and Results	456
4.2	Discussion	459

| 33 | Population Synthesis and Gamma-Ray Burst Progenitors | 463 |
| Chris L. Fryer |
1	Gamma-Ray Burst Progenitors	463
2	Formation Scenarios and Their Uncertainties	
2.1	Double Neutron Star Mergers	466
2.2	Black Hole + Neutron Star Mergers	468
2.3	White Dwarf + Black Hole Mergers	469
2.4	Collapsars	470
2.5	He-Mergers	471
3	Major Uncertainties	472
3.1	Kicks	472
3.2	Accretion in Common Envelope	474
3.3	Black Hole Formation	474
3.4	Stellar Radii	475
4	Some Optimism	475

| 34 | General Discussion on Population Synthesis Modelling | 479 |
| led by E.P.J. van den Heuvel |
| 1 | Introduction | 479 |
Contents

2 Input assumptions where we can agree on 480
3 Input ingredients which require discussion 480
4 Open questions 484

Part VI CHEMICAL EVOLUTION OF GALAXIES

35 Element Abundances and Galactic Chemical Evolution 491
Sean G. Ryan
1 Introduction 491
2 The halo metallicity distribution 493
3 Detailed abundances of selected elements 494
3.1 Lithium in dense stellar environments and the Galactic disk 495
3.2 Ubiquitous carbon overabundances in the halo 495
3.3 Oxygen 498
3.4 CNO, Ne-Na, and Mg-Al cycles 499
4 The primary problem with nitrogen 500
5 The α-elements and the iron peak 501
6 Zinc 502

36 Hypernova Nucleosynthesis and Galactic Chemical Evolution 507
Ken'ichi Nomoto, Keiichi Maeda, Hideyuki Umeda
Takayoshi Nakamura
1 Introduction 507
2 Spherical Hypernova Explosions 509
3 Aspherical Explosions 512
3.1 Nucleosynthesis 513
3.2 Nebula Spectra of SN 1998bw 515
4 Contribution of Hypernova to the Galactic Chemical Evolution 518
4.1 Iron, Titanium 519
4.2 Manganese, Chromium, Cobalt 519
4.3 Zinc 521
5 Other Observational Signatures of Hypernova Nucleosynthesis 528
5.1 Starburst Galaxies 528
5.2 Black Hole Binaries 528
6 Summary and Discussion 529

37 The Effect of Binaries on the Chemical Evolution of the Solar Neighbourhood 535
Erwin De Donder, Dany Vanbeveren
1 Introduction 535
2 Population number synthesis 537
 2.1 Supernova Ia progenitor model 539
 2.2 Net yields per generation of stars. 541
3 Chemical evolution 544
 3.1 Adopted model 544
 3.2 Results 546
4 The effect of stellar rotation on CEM results 552
5 General conclusion 553

Part VII POSTER PAPERS

38 Multi-Colour CCD Photometry of Intermediate Visual Double Stars 559
 A. Strigachev, P. Lampens, D. Duval

39 Simulations of The X-ray Output of Evolving Stellar Populations 561
 L. Norci, E.J.A. Meurs

40 The CV Minimum Period Problem 563
 John Barker, Ulrich Kolb

41 Resonant Tides in Close Binaries 565
 B. Willems

42 Improved Basic Physical Properties of the Oe-Star Binary V1007 Sco 567
 P. Mayer, P. Harmanec, R. Lorenz, H. Drechsel, P. Eenens, L.J. Corral, N. Morrell

43 The rp-Process on Compact Binaries: Importance of Exact Parameters 569
 J.L. Fisker, F. Rembges, V. Barnard, M.C. Wiescher

44 Magnetic Activities of Near Contact Binaries 573
 Young Woon Kang, Ho-il Kim, Woo-Baik Lee, Kyu-Dong Oh
45
Metal Abundance of the Eclipsing Binary YZ Cas
E. Lastennet, D. Valls-Gabaud, C. Jordi

46
Relativistic Effects to Neutron Star Merger Ejecta
R. Oechslin, F. K. Thielemann

47
On the Formation of Oxygen-Neon White Dwarfs in Binary Systems
Pilar Gil-Pons, Enrique García-Berro

48
Binary Statistics from Hipparcos
Staffan Söderhjelm