Contents

Preface v

Part 1 Principles of Environmental Fluid Mechanics

1. Preliminary Concepts 1
 1.1 Introduction 1
 1.2 Properties of Fluids 4
 1.3 Mathematical Preliminaries 8
 1.4 Dimensional Reasoning 27
 Problems 32
 Supplemental Reading 43

2. Fundamental Equations 45
 2.1 Introduction 45
 2.2 Fluid Velocity, Pathlines, Streamlines, and Streaklines 45
 2.3 Rate of Strain, Vorticity, and Circulation 48
 2.4 Lagrangian and Eulerian Approaches 52
 2.5 Conservation of Mass 56
 2.6 Conservation of Momentum 60
 2.7 The Equations of Motion and Constitutive Equations 65
 2.8 Conservation of Energy 71
 2.9 Scaling Analyses for Governing Equations 75
 Problems 87
 Supplemental Reading 123

3. Viscous Flows 125
 3.1 Various Forms of the Equations of Motion 125
 3.2 One-Directional Flows 128

Supplemental Reading 43
3.3 Creeping Flows 134
3.4 Unsteady Flows 137
3.5 Numerical Simulation Considerations 139
Problems 143
Supplemental Reading 162

4.1 Introduction 163
4.2 Two-Dimensional Flows and the Complex Potential 164
4.3 Flow Through Porous Media 179
4.4 Calculation of Forces 185
4.5 Numerical Simulation Considerations 192
Problems 200
Supplemental Reading 209

5. Introduction to Turbulence 211
5.1 Introduction 211
5.2 Definitions 212
5.3 Frequency Analysis 220
5.4 Stability Analysis 226
5.5 Turbulence Modeling 232
5.6 Scales of Turbulent Motion 242
Problems 245
Supplemental Reading 250

6. Boundary Layers 251
6.1 Introduction 251
6.2 The Equations of Motion for Boundary Layers 252
6.3 The Integral Approach of Von Karman 258
6.4 Laminar Boundary Layers 262
6.5 Turbulent Boundary Layers 264
6.6 Application of the Boundary Layer Concept to Heat and Mass Transfer 266
Problems 269
Supplemental Reading 274

7. Surface Water Flows 277
7.1 Introduction 277
7.2 Hydraulic Characteristics of Open Channel Flow 277
7.3 Application of the Energy Conservation Principle 289
7.4 Application of the Momentum Conservation Principle 296
7.5 Velocity Distribution in Open Channel Flow 299
Contents

7.6 Gradually Varied Flow 306
7.7 Circulation in Lakes and Reservoirs 319
Problems 328
Supplemental Reading 359

8. Surface Water Waves 361
8.1 Introduction 361
8.2 The Wave Equation 362
8.3 Gravity Surface Waves 364
8.4 Sinusoidal Surface Waves on Deep Water 366
8.5 Sinusoidal Surface Waves for Shallow Water Depth 372
8.6 The Group Velocity 378
8.7 Waves in Open Channels 382
8.8 Numerical Aspects 393
Problems 395
Supplemental Reading 400

9. Geophysical Fluid Motions 401
9.1 Introduction 401
9.2 General Concepts 402
9.3 The Taylor–Proudman Theorem 409
9.4 Wind-Driven Currents (Ekman Layer) 411
9.5 Vertically Integrated Equations of Motion 415
Problems 417
Supplemental Reading 421

Part 2 Applications of Environmental Fluid Mechanics

10. Environmental Transport Processes 423
10.1 Introduction 423
10.2 Basic Definitions, Advective Transport 426
10.3 Diffusion 427
10.4 The Advection–Diffusion Equation 431
10.5 Dispersion 438
10.6 Dispersion in Porous Media 446
10.7 Analytical Solutions to the Advection–Diffusion Equation 451
10.8 Numerical Solutions to the Advection–Diffusion Equation 466
Problems 473
Supplemental Reading 488
11. Groundwater Flow and Quality Modeling 489
 11.1 Introduction 489
 11.2 The Approximation of Dupuit 490
 11.3 Contaminant Transport 496
 11.4 Saltwater Intrusion into Aquifers 506
 11.5 Non-Aqueous Phase Liquid (NAPL) in Groundwater 511
 11.6 Numerical Modeling Aspects 515
 Problems 522
 Supplemental Reading 532

12. Exchange Processes at the Air/Water Interface 533
 12.1 Introduction 533
 12.2 Momentum Transport 533
 12.3 Solar Radiation and Surface Heat Transfer 539
 12.4 Exchange of Gases 552
 12.5 Measurement of Gas Mass Transfer Coefficients 564
 Problems 568
 Supplemental Reading 573

13. Topics in Stratified Flow 575
 13.1 Buoyancy and Stability Considerations 575
 13.2 Internal Waves 581
 13.3 Mixing 591
 13.4 Double-Diffusive Convection 603
 13.5 Mixed-Layer Modeling 609
 Problems 617
 Supplemental Reading 618

14. Dynamics of Effluents 621
 14.1 Jets and Plumes 621
 14.2 Submerged Discharges and Multiport Diffuser Design 631
 14.3 Surface Buoyant Discharges 635
 Problems 645
 Supplemental Reading 646

15. Sediment Transport 647
 15.1 Introduction 647
 15.2 Hydraulic Properties of Sediments 649
 15.3 Bed-Load Calculations 653
 15.4 Suspended Sediment Calculations 659
 15.5 Particle Interactions 668
 15.6 Particle-Associated Contaminant Transport 676
Contents

Problems 682
Supplemental Reading 687

Remediation Issues 691
16.1 Introduction 691
16.2 Soil and Aquifer Remediation 692
16.3 Bioremediation 701
16.4 Remediation of Surface Waters 709
Problems 713
Supplemental Reading 719

dex 721