TABLE OF CONTENTS

Preface xi
Contributing Authors xiii

Part I Introduction to Computational Neural Networks 1
Chapter 1 A Brief History 3
 1. Introduction 3
 2. Historical Development 5
 2.1. Mcculloch and Pitts Neuron 7
 2.2. Hebbian Learning 9
 2.3. Neurocomputing 10
 2.4. Perceptron 11
 2.5. ADALINE 13
 2.6. Caianiello Neurons 14
 2.7. Limitations 15
 2.8. Next Generation 15

Chapter 2 Biological Versus Computational Neural Networks 19
 1. Computational Neural Networks 19
 2. Biological Neural Networks 19
 3. Evolution of the Computational Neural Network 23

Chapter 3 Multi-Layer Perceptrons and Back-Propagation Learning 27
 1. Vocabulary 27
 2. Back-Propagation 28
 3. Parameters 35
 3.1. Number of Hidden Layers 35
 3.2. Number of Hidden Pes 37
 3.3. Threshold Function 43
 3.4. Weight Initialization 43
 3.5. Learning Rate and Momentum 45
 3.6. Bias 46
 3.7. Error Accumulation 47
 3.8. Error Calculation 49
 3.9. Regularization and Weight Decay 49
 4. Time-Varying Data 50

Chapter 4 Design of Training and Testing Sets 55
 1. Introduction 55
 2. Re-Scaling 56
3. Data Distribution 58
4. Size Reduction 58
5. Data Coding 60
6. Order of Data 61

Chapter 5 Alternative Architectures and Learning Rules 66
1. Improving on Back-Propagation 66
 1.1. Delta Bar Delta 67
 1.2. Directed Random Search 68
 1.3. Resilient Back-Propagation 69
 1.4. Conjugate Gradient 71
 1.5. Quasi-Newton Method 72
 1.6. Levenberg-Marquardt 72
2. Hybrid Networks 74
 2.1. Radial Basis Function Network 74
 2.2. Modular Neural Network 75
 2.3. Probabilistic Neural Network 75
 2.4. Generalized Regression Neural Network 78
3. Alternative Architectures 78
 3.1. Self Organizing Map 78
 3.2. Hopfield Networks 81
 3.3. Adaptive Resonance theory 84

Chapter 6 Software and Other Resources 89
1. Introduction 89
2. Commercial Software Packages 89
3. Open Source Software 97
4. News Groups 97

Part II Seismic Data Processing 99
Chapter 7 Seismic Interpretation and Processing Applications 101
1. Introduction 101
2. Waveform Recognition 101
3. Picking Arrival Times 103
4. Trace Editing 109
5. Velocity Analysis 110
6. Elimination of Multiples 112
7. Deconvolution 113
8. Inversion 115

Chapter 8 Rock Mass and Reservoir Characterization 119
1. Introduction 119
2. Horizon Tracking and Facies Maps 119
Chapter 12 Caianiello Neural Network Method for Geophysical Inverse Problems

1. Introduction
2. Generalized Geophysical Inversion
 2.1. Generalized Geophysical Model
 2.2. Ill-Posedness and Singularity
 2.3. Statistical Strategy
 2.4. Ambiguous Physical Relationship
3. Caianiello Neural Network Method
 3.1. Mcculloch-Pitts Neuron Model
 3.2. Caianiello Neuron Model
 3.3. The Caianiello Neuron-Based Multi-Layer Network
 3.4. Neural Wavelet Estimation
 3.5. Input Signal Reconstruction
 3.6. Nonlinear Factor Optimization
4. Inversion With Simplified Physical Models
 4.1. Simplified Physical Model
 4.2. Joint Impedance Inversion Method
 4.3. Nonlinear Transform
 4.4. Joint Inversion Step 1: MSI and MS Wavelet Extraction At the Wells
 4.5. Joint Inversion Step 2: Initial Impedance Model Estimation
 4.6. Joint Inversion Step 3: Model-Based Impedance Improvement
 4.7. Large-Scale Stratigraphic Constraint
5. Inversion With Empirically-Derived Models
 5.1. Empirically Derived Petrophysical Model for the Trend
 5.2. Neural Wavelets for Scatter Distribution
 5.3. Joint Inversion Strategy
6. Example
7. Discussions and Conclusions

Part III Non-Seismic Applications

Chapter 13 Non-Seismic Applications

1. Introduction
2. Well Logging
 2.1. Porosity and Permeability Estimation
 2.2. Lithofacies Mapping
3. Gravity and Magnetics
4. Electromagnetics
Chapter 14 Detection of AEM Anomalies Corresponding to Dike Structures
1. Introduction
2. Airborne Electromagnetic Method - Theoretical Background
 2.1. General
 2.2 Forward Modeling for 1 Dimensional Models
 2.3. Forward Modelling for 2 Dimensional Models With EMIGMA
3. Feedforward Computational Neural Networks (CNN)
4. Concept
5. CNNs to Calculate Homogeneous Halfspaces
6. CNN for Detecting 2D Structures
 6.1. Training and Test Vectors
 6.2. Calculation of the Error Term (±1ppm, ±2ppm)
 6.3. Calculation of the Random Models (Model Categories 6-8)
 6.4. Training
7. Testing
8. Conclusion

Chapter 15 Locating Layer Boundaries with Unfocused Resistivity Tools
1. Introduction
2. Layer Boundary Picking
3. Modular Neural Network
4. Training With Multiple Logging Tools
 4.1. Mnn, Mlp, and Rbf Architectures
 4.2. Rprop and Grnn Architectures
5. Analysis of Results
 5.1. Thin Layer Model (Thickness From 0.5 to 2 M)
 5.2. Medium-Thickness Layer Model (Thickness From 1.5 to 4 M)
 5.3. Thick Layer Model (Thickness From 6 to 16 M)
 5.4. Testing the Sensitivity to Resistivity
6. Conclusions

Chapter 16 A Neural Network Interpretation System for Near-Surface Geophysics Electromagnetic Ellipticity Soundings
1. Introduction