OCEAN WAVES AND
OSCILLATING SYSTEMS

LINEAR INTERACTIONS INCLUDING
WAVE-ENERGY EXTRACTION

JOHANNES FALNES
Department of Physics
Norwegian University of Science and Technology NTNU

CAMBRIDGE UNIVERSITY PRESS
Contents

Preface

1 Introduction

2 Mathematical Description of Oscillations
 2.1 Free and Forced Oscillations of a Simple Oscillator
 2.1.1 Free Oscillation
 2.1.2 Forced Oscillation
 2.1.3 Electric Analogue: Remarks on the Quality Factor
 2.2 Complex Representation of Harmonic Oscillations
 2.2.1 Complex Amplitudes and Phasors
 2.2.2 Mechanical Impedance
 2.3 Power and Energy Relations
 2.3.1 Harmonic Oscillation: Active Power and Reactive Power
 2.4 State-Space Analysis
 2.5 Linear Systems
 2.5.1 The Delta Function and Related Distributions
 2.5.2 Impulse Response: Time-Invariant System
 2.6 Fourier Transform and Other Integral Transforms
 2.6.1 Fourier Transformation in Brief
 2.6.2 Time-Invariant Linear System
 2.6.3 Kramers-Kronig Relations and Hilbert Transform
 2.6.4 An Energy Relation for Non-sinusoidal Oscillation
 Problems

3 Interaction Between Oscillations and Waves
 3.1 Comparison of Waves on Water with Other Waves
 3.2 Dispersion, Phase Velocity and Group Velocity
 3.3 Wave Power and Energy Transport
 3.4 Radiation Resistance and Radiation Impedance
 3.5 Resonance Absorption
 Problems

Preface *ix*

1 Introduction 1

2 Mathematical Description of Oscillations 4
 2.1 Free and Forced Oscillations of a Simple Oscillator 4
 2.1.1 Free Oscillation 5
 2.1.2 Forced Oscillation 6
 2.1.3 Electric Analogue: Remarks on the Quality Factor 9
 2.2 Complex Representation of Harmonic Oscillations 10
 2.2.1 Complex Amplitudes and Phasors 10
 2.2.2 Mechanical Impedance 13
 2.3 Power and Energy Relations 17
 2.3.1 Harmonic Oscillation: Active Power and Reactive Power 18
 2.4 State-Space Analysis 20
 2.5 Linear Systems 23
 2.5.1 The Delta Function and Related Distributions 25
 2.5.2 Impulse Response: Time-Invariant System 26
 2.6 Fourier Transform and Other Integral Transforms 27
 2.6.1 Fourier Transformation in Brief 28
 2.6.2 Time-Invariant Linear System 31
 2.6.3 Kramers-Kronig Relations and Hilbert Transform 33
 2.6.4 An Energy Relation for Non-sinusoidal Oscillation 37
 Problems 38

3 Interaction Between Oscillations and Waves 43
 3.1 Comparison of Waves on Water with Other Waves 43
 3.2 Dispersion, Phase Velocity and Group Velocity 45
 3.3 Wave Power and Energy Transport 46
 3.4 Radiation Resistance and Radiation Impedance 49
 3.5 Resonance Absorption 51
 Problems 54
4 Gravity Waves on Water

4.1 Basic Equations: Linearisation 58
4.2 Harmonic Waves on Water of Constant Depth 64
4.3 Plane Waves: Propagation Velocities 70
4.4 Wave Transport of Energy and Momentum 75
 4.4.1 Potential Energy 75
 4.4.2 Kinetic Energy 76
 4.4.3 Total Stored Energy 77
 4.4.4 Wave-Energy Transport 77
 4.4.5 Relation Between Energy Transport and Stored Energy 78
 4.4.6 Momentum Transport and Momentum Density of a Wave 79
 4.4.7 Drift Forces Caused by the Absorption and Reflection of Wave Energy 81
4.5 Real Ocean Waves 83
4.6 Circular Waves 87
4.7 A Useful Integral Based on Green’s Theorem 91
4.8 Far-Field Coefficients and Kochin Functions 96
4.9 Waves in the Time Domain 104
 4.9.1 Relation Between Wave Elevations at Two Locations 105
 4.9.2 Relation Between Hydrodynamic Pressure and Wave Elevation 109

Problems 109

5 Wave-Body Interactions 118

5.1 Six Modes of Body Motion: Wave Forces and Moments 118
 5.1.1 Six Modes of Motion 119
 5.1.2 Hydrodynamic Force Acting on a Body 121
 5.1.3 Excitation Force 123
5.2 Radiation from an Oscillating Body 125
 5.2.1 The Radiation Impedance Matrix 125
 5.2.2 Energy Interpretation of the Radiation Impedance 127
 5.2.3 Wavemaker in a Wave Channel 128
 5.2.4 Examples of Other Body Geometries 133
5.3 Impulse Response Functions in Hydrodynamics 138
 5.3.1 The Kramers-Kronig Relations in Hydrodynamic Radiation 139
 5.3.2 Non-causal Impulse Response for the Excitation Force 141
5.4 Reciprocity Relations 143
 5.4.1 Radiation Resistance in Terms of Far-Field Coefficients 144
 5.4.2 The Excitation Force: The Haskind Relation 147
 5.4.3 Reciprocity Relation Between Radiation Resistance and Excitation Force 148
5.5 Several Bodies Interacting with Waves 149
 5.5.1 Phenomenological Discussion 150
 5.5.2 Hydrodynamic Formulation 151
 5.5.3 Radiation-Impedance and Radiation-Resistance Matrices 153
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.5.4 Radiation-Reactance and Added-Mass Matrices</td>
<td>156</td>
</tr>
<tr>
<td>5.5.5 Excitation Force Vector: The Haskind Relation</td>
<td>158</td>
</tr>
<tr>
<td>5.5.6 Wide-Spacing Approximation</td>
<td>159</td>
</tr>
<tr>
<td>5.6 The Froude-Krylov Force and Small-Body Approximation</td>
<td>160</td>
</tr>
<tr>
<td>5.6.1 The Froude-Krylov Force and Moment</td>
<td>161</td>
</tr>
<tr>
<td>5.6.2 The Diffraction Force</td>
<td>163</td>
</tr>
<tr>
<td>5.6.3 Small-Body Approximation for a Group of Bodies</td>
<td>163</td>
</tr>
<tr>
<td>5.6.4 Small-Body Approximation for a Single Body</td>
<td>165</td>
</tr>
<tr>
<td>5.7 Axisymmetric Oscillating System</td>
<td>168</td>
</tr>
<tr>
<td>5.7.1 The Radiation Impedance</td>
<td>171</td>
</tr>
<tr>
<td>5.7.2 Radiation Resistance and Excitation Force</td>
<td>172</td>
</tr>
<tr>
<td>5.7.3 Numerical 2-Body Example</td>
<td>175</td>
</tr>
<tr>
<td>5.8 Two-Dimensional System</td>
<td>179</td>
</tr>
<tr>
<td>5.9 Motion Response and Control of Motion</td>
<td>181</td>
</tr>
<tr>
<td>5.9.1 Dynamics of a Floating Body in Heave</td>
<td>183</td>
</tr>
<tr>
<td>Problems</td>
<td>187</td>
</tr>
<tr>
<td>6 Wave-Energy Absorption by Oscillating Bodies</td>
<td>196</td>
</tr>
<tr>
<td>6.1 Absorption Considered as Wave Interference</td>
<td>196</td>
</tr>
<tr>
<td>6.2 Absorption by a Body Oscillating in One Mode of Motion</td>
<td>198</td>
</tr>
<tr>
<td>6.2.1 Maximum Absorbed Power</td>
<td>200</td>
</tr>
<tr>
<td>6.2.2 Upper Bound of Power-to-Volume Ratio</td>
<td>200</td>
</tr>
<tr>
<td>6.2.3 Maximum Converted Useful Power</td>
<td>202</td>
</tr>
<tr>
<td>6.3 Optimum Control for Maximising Converted Energy</td>
<td>204</td>
</tr>
<tr>
<td>6.4 Absorption by a System of Several Oscillators</td>
<td>212</td>
</tr>
<tr>
<td>6.4.1 Maximum Absorbed Power and Useful Power</td>
<td>214</td>
</tr>
<tr>
<td>6.4.2 Maximum Absorbed Power by an Axisymmetric Body</td>
<td>216</td>
</tr>
<tr>
<td>6.4.3 Maximum Absorbed Power in the Two-Dimensional Case</td>
<td>218</td>
</tr>
<tr>
<td>6.4.4 Maximum Absorbed Power with Amplitude Constraints</td>
<td>222</td>
</tr>
<tr>
<td>Problems</td>
<td>222</td>
</tr>
<tr>
<td>7 Wave Interaction with Oscillating Water Columns</td>
<td>225</td>
</tr>
<tr>
<td>7.1 The Applied-Pressure Description for a Single OWC</td>
<td>226</td>
</tr>
<tr>
<td>7.1.1 Absorbed Power and Radiation Conductance</td>
<td>229</td>
</tr>
<tr>
<td>7.1.2 Reactive Power and Radiation Susceptance</td>
<td>230</td>
</tr>
<tr>
<td>7.1.3 An Axisymmetric Example</td>
<td>230</td>
</tr>
<tr>
<td>7.1.4 Maximum Absorbed Power</td>
<td>232</td>
</tr>
<tr>
<td>7.1.5 Reciprocity Relations for an OWC</td>
<td>234</td>
</tr>
<tr>
<td>7.1.6 OWC with Pneumatic Power Takeoff</td>
<td>236</td>
</tr>
<tr>
<td>7.2 Systems of OWCs and Oscillating Bodies</td>
<td>238</td>
</tr>
<tr>
<td>7.2.1 Phenomenological Theory</td>
<td>239</td>
</tr>
<tr>
<td>7.2.2 Absorbed Power</td>
<td>242</td>
</tr>
<tr>
<td>7.2.3 Hydrodynamic Formulation</td>
<td>244</td>
</tr>
<tr>
<td>7.2.4 Hydrodynamic Parameters</td>
<td>246</td>
</tr>
<tr>
<td>7.2.5 Reciprocity Relations for Radiation Parameters</td>
<td>247</td>
</tr>
<tr>
<td>7.2.6 Extension of the Haskind Relation</td>
<td>251</td>
</tr>
</tbody>
</table>