THE KURZWEIL-HENSTOCK INTEGRAL AND ITS DIFFERENTIALS

A Unified Theory of Integration on \mathbb{R} and \mathbb{R}^n

Solomon Leader
Rutgers University
New Brunswick, New Jersey
CONTENTS

Preface iii

Introduction

§0.1 The Gauge-Directed Integral 1
§0.2 Differentials 5
§0.3 Guidance for the Reader 6

Chapter 1. Integration of Summants

§1.1 Cells, Figures and Partitions 9
§1.2 Tagged Cells, Divisions, and Gauges 11
§1.3 The Upper and Lower Integrals of a Summant over a Figure 15
§1.4 Summants with Special Properties 21
§1.5 Upper and Lower Integrals as Functions on the Boolean Algebra of Figures 29
§1.6 Uniform Integrability and Its Consequences 33
§1.7 Term-by-Term Integration of Series 40
§1.8 Applications of Term-by-Term Upper Integration 43
§1.9 Integration over Arbitrary Intervals 45
Chapter 2. Differentials and Their Integrals
§2.1 Differential Equivalence and Differentials 53
§2.2 The Riesz Space $\mathcal{D} = \mathcal{D}(K)$ of All Differentials on K 55
§2.3 Differential Norm and Summable Differentials 57
§2.4 Conditionally and Absolutely Integrable Differentials 60
§2.5 The Differential dg of a Function g 66
§2.6 The Total Variation of a Function on a Cell K 68
§2.7 Functions as Differential Coefficients 73
§2.8 The Lebesgue Space L_1 and Convergence Theorems 78

Chapter 3. Differentials with Special Properties
§3.1 Products Involving Tag-Finite Summants and Differentials 87
§3.2 Continuous Differentials 96
§3.3 Archimedean Properties for Differentials 99
§3.4 Differentials on Open-Ended Intervals 106
§3.5 σ-Nullity of the Union of All σ-Null Cells 119
§3.6 Mappings of Differentials Induced by Lipschitz Functions 120
§3.7 n-Differentials on a Cell K 125

Chapter 4. Measurable Sets and Functions
§4.1 Measurable Sets 129
§4.2 The Hahn Decomposition for Differentials 133
§4.3 Measurable Functions 137
§4.4 Step Functions and Regulated Functions 145
§4.5 The Radon-Nikodym Theorem for Differentials 160
§4.6 Minimal Measurable Dominators 163

Chapter 5. The Vitali Covering Theorem Applied to Differentials
§5.1 The Vitali Covering Theorem with some Applications to Upper Integrals 169
CONTENTS

§5.2 \(\nu(1_{E} df) \) and Lebesgue Outer Measure of \(f(E) \) 175
§5.3 Continuity \(\sigma \)-Everywhere of \(\rho \) Given \(\rho \sigma = 0 \) 181

Chapter 6. Derivatives and Differentials

§6.1 Differential Coefficients from the Gradient 187
§6.2 Integration by Parts and Taylor’s Formula 196
§6.3 A Generalized Fundamental Theorem of Calculus 209
§6.4 L’Hôpital’s Rule and the Limit Comparison Test Using Essential Limits 222
§6.5 Differentiation Under the Integral Sign 229

Chapter 7. Essential Properties of Functions

§7.1 Essentially Bounded Functions 235
§7.2 Essentially Regulated Functions 238
§7.3 Essential Variation 241

Chapter 8. Absolute Continuity

§8.1 Various Concepts of Absolute Continuity for Differentials 249
§8.2 Absolute Continuity for Restricted Classes of Differentials 253
§8.3 Absolutely Continuous Functions 257
§8.4 The Vitali Convergence Theorem 262

Chapter 9. Conversion of Lebesgue-Stieltjes Integrals into Lebesgue Integrals

§9.1 Banach’s Indicatrix Theorem 267
§9.2 A Generalization of the Indicatrix Theorem with Applications 270

Chapter 10. Some Results on Higher Dimensions

§10.1 Integral and Differential on \(n \)-Cells 285
§10.2 Direct Products of Summants 293