Inverse Problems for Kinetic and other Evolution Equations

Yu.E. Anikonov

///VSP///
Utrecht • Boston • Köln • Tokyo
2001
Contents

Chapter 1. Formulas for solutions and coefficients of kinetic and other equations

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1. Kinetic equations</td>
<td>1</td>
</tr>
<tr>
<td>1.2. Several formulas for solutions and coefficients of kinetic equations</td>
<td>5</td>
</tr>
<tr>
<td>1.3. Formulas in the inverse problems for kinetic equations with a potential</td>
<td>9</td>
</tr>
<tr>
<td>1.4. Formulas in tomography problems</td>
<td>11</td>
</tr>
<tr>
<td>1.5. Formulas of inverse problems for kinetic equation and integral geometry involving integration along geodesics</td>
<td>15</td>
</tr>
<tr>
<td>1.6. Differential and functional equations of inverse problems for nonlinear equations</td>
<td>21</td>
</tr>
</tbody>
</table>

Chapter 2. Theorems of uniqueness for inverse problems for kinetic equations

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1. Inverse problem for a system of kinetic equations</td>
<td>35</td>
</tr>
<tr>
<td>2.2. Inverse problems for a system of quantum kinetic equations</td>
<td>40</td>
</tr>
<tr>
<td>2.3. On uniqueness of determination of a form by its integrals along geodesics</td>
<td>55</td>
</tr>
<tr>
<td>2.4. Dynamical model of the ethnic system. Formulas in direct and inverse problems</td>
<td>59</td>
</tr>
</tbody>
</table>

Chapter 3. Spherical harmonic method and inverse problem for kinetic equations

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1. Spherical harmonics method</td>
<td>73</td>
</tr>
<tr>
<td>3.2. Steady-state transfer equation</td>
<td>79</td>
</tr>
</tbody>
</table>
3.3. Determining the dispersion index in the case of
the P_1-approximation .. 93
3.4. Definition of the dispersion index in the case of
the P_2-approximation .. 101
3.5. Reconstruction of the dispersion index
and the source function 121

Chapter 4. Inverse problems for evolution equations of
determining two coefficients 127

4.1. Nonlocal boundary-value problems for nonlinear equations
and inverse problems of determining two coefficients 127
4.2. Recurrent formulas on derivatives of solutions 139
4.3. Integrodifferential equations in inverse problems of determining
two coefficients for evolution equations 144
4.4. Inverse problem for a system of Maxwell equations 152
4.5. Determining two unknown coefficients of
the parabolic-type equation 160
4.6. Inhomogeneous conditions of overdetermination 172
4.7. Representation of solutions and coefficients of
partial differential equations of the second order 184

Chapter 5. Some results of multidimensional inverse problems
theory .. 199

5.1. Formulas for coefficients in inverse problems for general
evolutionary equations 199
5.2. Formulas in inverse problems for difference-differential equations ... 208
5.3. Inverse problem for evolutionary
equations with degeneration and others 212
5.4. Group analysis and formulas in inverse problems of mathematical
physics ... 216
5.5. Uniqueness of the solution of an integral equation of the first kind
over real algebras with division of the finite dimension 237
5.6. Methods of geometry in the inverse seismic problem 244
5.7. Problems associated with projections of convex bodies
onto planes ... 252

Bibliography ... 267